在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引。比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字。

使用下标索引的时候下标总是从0开始的,而且索引值总是数字。而使用关键字进行索引,关键字是key里面的值,既可以是数字,也可以是字符串等。

Series对象介绍:

Series对象是由索引index和值values组成的,一个index对应一个value。其中index是pandas中的Index对象。values是numpy中的数组对象。

import pandas as pd
s1 = pd.Series([2,3,4,5], index=['a', 'b', 'c', 'd'])
print(s1)
结果:
a 2
b 3
c 4
d 5
dtype: int64 print(s1.index)
结果:
Index(['a', 'b', 'c', 'd'], dtype='object') print(s1.values)
结果:
[2 3 4 5]

如何对Series对象进行索引?

1:使用index中的值进行索引

print(s1['a'])
结果:
2 print(s1[['a','d']])
结果:
a 2
d 5
dtype: int64 print(s1['b':'d'])
结果(注意,切片索引保存最后一个值):
b 3
c 4
d 5
dtype: int64

2:使用下标进行索引

print(s1[0])
结果:
2 print(s1[[0,3]])
结果:
a 2
d 5
dtype: int64 print(s1[1:3])
结果(注意:这里和上面不同的是不保存最后一个值,与正常索引相同):
b 3
c 4
dtype: int64

3:特殊情况:

上面的index为字符串,假如index为数字,这个时候进行索引是按照index值进行还是按照下标进行?

s1 = pd.Series([2,3,4,5], index=[1,2,3,4])
print(s1[2])
结果:
3
print(s1[0]) 会报错 print(s1[[2,4]])
结果:
2 3
4 5
dtype: int64 print(s1[1:3])
结果:
2 3
3 4
dtype: int64

可以看出来,当index为整数的时候,那么前两种选择是使用index的值进行索引, 而后一种切片选择使用的是下标进行索引。

4:使用布尔Series进行索引

使用布尔Series进行索引的时候,其实是要求布尔Series和我们的索引对象有相同的index。

s1 = pd.Series([2,3,4,5], index=['a', 'b', 'c', 'd']
print(s1 > 3)
结果(这是一个bool Series):
a False
b False
c True
d True
dtype: bool print(s1[s1 > 3])
结果(只需要把bool Series 传入Series就可以实现索引):
c 4
d 5
dtype: int64

5:使用Index对象来进行索引

使用Index对象进行索引的时候,和使用值索引没有本质的区别。因为Index里面也存入了很多值,可以把Index看做一个list。

DataFrame对象介绍:

DataFrame对象是一个由行列组成的表。DataFrame中行由columns组成,列由index组成,它们都是Index对象。它的值还是numpy数组。

data = {'name':['ming', 'hong', 'gang', 'tian'], 'age':[12, 13, 14, 20], 'score':[80.3, 88.2, 90, 99.9]}
df1 = pd.DataFrame(data) print(df1.index)
结果:
RangeIndex(start=0, stop=4, step=1) print(df1.columns)
结果:
Index(['age', 'name', 'score'], dtype='object') print(df1.values)
结果:
[[12 'ming' 80.3]
[13 'hong' 88.2]
[14 'gang' 90.0]
[20 'tian' 99.9]]

如何对DataFrame对象进行索引

1:使用columns的值对列进行索引

直接使用columns中的值进行索引,得到的是一列或者是多列的值

print(df1['name'])
结果:
0 ming
1 hong
2 gang
3 tian
Name: name, dtype: object print(df1[['name','age']])
结果:
name age
0 ming 12
1 hong 13
2 gang 14
3 tian 20

注意:不可以直接使用下标对列进行索引,除非该columns当中包含该值。如下面的操作是错误的
print(df1[0])
结果: 错误

2:切片或者布尔Series对行进行索引

使用切片索引,或者布尔类型Series进行索引:

print(df1[0:3])
使用切片进行选择,结果:
age name score
0 12 ming 80.3
1 13 hong 88.2
2 14 gang 90.0 print(df1[ df1['age'] > 13 ])
使用布尔类型Series进行索引,其实还是要求布尔Series和DataFrame有相同的index,结果:
age name score
2 14 gang 90.0
3 20 tian 99.9

3:使用loc和iloc进行索引

本质上loc是用index和columns当中的值进行索引,而iloc是不理会index和columns当中的值的,永远都是用从0开始的下标进行索引。所以当你搞懂这句话的时候,下面的索引就会变得非常简单:

print(df1.loc[3])
结果:
name hong
score 88.2
Name: 3, dtype: object print(df1.loc[:,'age'])
结果:
1 12
3 13
4 14
5 20
Name: age, dtype: int64 print(df1.iloc[3])
结果:
age 20
name tian
score 99.9
Name: 5, dtype: object print(df1.iloc[:,1])
结果:
1 ming
3 hong
4 gang
5 tian
Name: name, dtype: object

Pandas中Series和DataFrame的索引的更多相关文章

  1. Python之Pandas中Series、DataFrame

    Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...

  2. Python之Pandas中Series、DataFrame实践

    Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...

  3. [Python] Pandas 中 Series 和 DataFrame 的用法笔记

    目录 1. Series对象 自定义元素的行标签 使用Series对象定义基于字典创建数据结构 2. DataFrame对象 自定义行标签和列标签 使用DataFrame对象可以基于字典创建数据结构 ...

  4. pandas中series和dataframe之间的区别

    series结构有索引,和列名组成,如果没有,那么程序会自动赋名为None series的索引名具有唯一性,索引可以数字和字符,系统会自动将他们转化为一个类型object. dataframe由索引和 ...

  5. Pandas中Series与Dataframe的区别

    1. Series Series通俗来讲就是一维数组,索引(index)为每个元素的下标,值(value)为下标对应的值 例如: arr = ['Tom', 'Nancy', 'Jack', 'Ton ...

  6. Pandas中Series与Dataframe的初始化

    (一)Series初始化 1.通过列表,index自动生成 se = pd.Series(['Tom', 'Nancy', 'Jack', 'Tony']) print(se) 2.通过列表,指定in ...

  7. pandas学习series和dataframe基础

    PANDAS 的使用 一.什么是pandas? 1.python Data Analysis Library 或pandas 是基于numpy的一种工具,该工具是为了解决数据分析人物而创建的. 2.p ...

  8. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

  9. pandas中的数据结构-DataFrame

    pandas中的数据结构-DataFrame DataFrame是什么? 表格型的数据结构 DataFrame 是一个表格型的数据类型,每列值类型可以不同 DataFrame 既有行索引.也有列索引 ...

随机推荐

  1. struts获得参数(属性,对象,模型驱动)

    0. strutsMVC

  2. oracle imp dmp命令

    vi par.txt userid=system/oracle tables=(user.table,...) query="where org_no like 32%" file ...

  3. [Leetcode] Combination Sum 系列

    Combination Sum 系列题解 题目来源:https://leetcode.com/problems/combination-sum/description/ Description Giv ...

  4. linux 内核信号量

    Linux内核的信号量在概念和原理上和用户态的System V的IPC机制信号量是相同的,不过他绝不可能在内核之外使用,因此他和System V的IPC机制信号量毫不相干. 信号量在创建时需要设置一个 ...

  5. 一致性hash理解

    在做memcached分布式集群时往往要用到一致性hash算法来调节缓存数据的分布. 通常的hash算法是以服务器数量N作为模数,使用key%N的值来获得最终位置,显然当服务器数量发生变化即N发生变化 ...

  6. Java Tuple使用实例(转)

    转自链接:http://www.cnblogs.com/davidwang456/p/4514659.html 一.为什么使用元组tuple? 元组和列表list一样,都可能用于数据存储,包含多个数据 ...

  7. HBase 入门笔记-安装篇

    一.前言 接触HBase已近半年,从一无所知到问题的解决,在数据落地方面也有了一定的了解,在此记录这半年来碰到的一些问题和对一些数据落地方面的见解,本篇主要介绍一下hbase安装方面的信息 二.安装环 ...

  8. csv 文件乱码问题

    问题背景: Pandas.DataFrame 数据结构df在调用df.to_csv()方法生成csv文件格式的字符串(调用df.to_csv('test.csv')直接生成文件也有这个问题)作为字符串 ...

  9. SpringBoot项目在IntelliJ IDEA中实现热部署(简单方式)

    ------   开启idea自动make/build功能   ----- 1.CTRL + SHIFT + A --> 查找make project automatically --> ...

  10. vue表格导出

    inportexcel: function() { //兼容ie10哦! require.ensure([], () => { const { export_json_to_excel } = ...