http://electronicdesign.com/power/simple-addition-permits-voltage-control-dc-dc-converters-output

In a standard dc-dc converter, a resistor divider typically defines a fixed output voltage. However, applications like programmable output voltage power supplies and motor control circuits require dynamic control of the dc-dc converter’s output voltage. The circuit described here allows control of the converter’s output voltage, VOut, with a control voltage, VC.

In a conventional dc-dc buck converter, VOut is:

so VOut is fixed by the values of R1 and R2 (Fig. 1).

1. The output voltage in a conventional dc-dc buck converter is fixed and depends on the resistor divider, R1/R2.

The added circuitry in Figure 2 enables users to control the same dc-dc converter’s output voltage using VC.

2. The added circuitry in this version of the dc-dc converter permits control of VOut by varying a control voltage, VC.

In this case, R2 is not connected to the ground but, rather, to Vr. Equation 1 then becomes:

VOUT = VFB + ( ( VFB - VR ) / R2 ) * R1

VOUT - VR = VFB - VR + ( ( VFB - VR ) / R2 ) * R1

VOUT - VR = ( VFB - VR ) * R2 / R2  + ( VFB - VR ) * R1 / R2

VOUT - VR = ( VFB - VR ) * ( R2 +  R1 ) / R2

Since R1 = 20 kΩ and R2 = 10 kΩ, Equation 2 can be simplified to:

VOut – Vr = 3(Vfb – Vr)(3)

or:

VOut = 3 Vfb – 2 Vr(4)

( VC - V- ) / R4 = ( V- - VR ) / R3 ( I4 = I3 )

VC / R4 - V- / R4 = V- / R3 - VR / R3

V- / R4 + V- / R3 = VC / R4 + VR / R3

V- * ( R3 + R4 ) / ( R3 * R4 ) = ( VC * R3 + VR * R4 )/ ( R3 * R4 )

V- * ( R3 + R4 )  = ( VC * R3 + VR * R4 )

VR * R4 =  V- * ( R3 + R4 ) - VC * R3

V- = V+ = VREF : VR * R4 =  VREF * ( R3 + R4 ) - VC * R3

R3 = R4 : VR * R3 =  VREF * ( R3 + R3 ) - VC * R3

VR = VREF * 2 - VC

R3 and R4 have the same value, 10 kΩ, so amplifier U2’s output voltage is:

Vr = 2 VRef – VC(5)

where VRef is the reference voltage generated by U3 after resistor divider R7/R8.

VOut = 3 Vfb – 2 Vr(4)

Combining Equation 4 and Equation 5:

VOut = 3 Vfb – 4 VRef + 2 V(6)

To simplify Equation 6, choose components that make:

3 Vfb = 4 VRef(7)

Then Equation 6 becomes:

VOut = 2 V(8)      

The internal voltage reference of U1 is 0.8 V. ( TPS54332 )

VREF = 3VFB / 4 = 3 *0.8 / 4 = 0.6V

LM4040D25 : 2.5V : By choosing R7 = 10 kΩ and R8 = 3.16 kΩ, VRef = 0.6 V, satisfying Equation 7.

Finally, C1 lowers U2’s output impedance at high frequencies,
maintaining the stability of U1’s feedback loop.

The added circuitry allows users to control the buck converter’s output voltage,

VOut, in the range of 0 to 5 V with a control voltage, VC, in the range of 0 to 2.5 V.

Similar circuitry can be designed for use with a boost converter,

or any other dc-dc converter, as long as its feedback voltage pin is accessible.

Using an operational amplifier in the feedback path

A very flexible way of influencing the feedback pin while not being so restricted
in terms of the control signal is to use an operational amplifier.

It can be used to inject some current into the feedback divider which then
forces the control loop of the power supply to change the output voltage.

This way the output voltage can be varied continuously as a function
of the current injected into the feedback node.

Often, the information controlling the output voltage change on a power supply in sensor applications
as well as motor drive applications is an analog signal.

Depending on the nature of this control signal, the circuit around the operational amplifier
can be defined to set the lowest voltage output independent of what the control signal range is.

Also there is great flexibility in the ratio of control signal change to change in the output voltage.

Figure 3 shows an amplifier circuit in the feedback path of a switching power supply.

The difference amplifier uses an operational amplifier and four additional resistors R1 through R4.

The output of the operational amplifier acts like a voltage source.

In order to inject a current into the feedback node this voltage is converted into a current by resistor R5.

It equals the internal impedance of the current source which the operational amplifier and R5 constitute.

Together with the feedback resistors R6 and R7 any output voltage changes
can be set based on almost any given control signal.

The signal voltage V1 is the control signal.
The voltage V2 is a reference voltage for the operational amplifier.

It should be a fairly constant voltage since variations on it will
change the output voltage of the power supply as well.

If a fairly precise rail in the system is available it can generally be used.
A good solution is a low voltage reference IC such as National Semiconductors LM4040.

Simple Addition Permits Voltage Control Of DC-DC Converter's Output的更多相关文章

  1. Simple dc/dc converter increases available power in dual-voltage system

    The schematic in Figure 1 shows a way to increase the power available from a current-limited 5V supp ...

  2. PID DC/DC Converter Controller Using a PICmicro Microcontroller

    http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en011794 ...

  3. LT1946A-- Transformerless dc/dc converter produces bipolar outputs

    Dual-polarity supply provides ±12V from one IC VC (Pin 1): Error Amplifier Output Pin. Tie external ...

  4. Practice safe dc/dc converter

    Short-circuit protection is an obvious requirement for a power supply, especially when its load conn ...

  5. [专业名词·硬件] 2、DC\DC、LDO电源稳压基本常识(包含基本原理、高效率模块设计、常见问题、基于nRF51822电源管理模块分析等)·长文

    综述先看这里 第一节的1.1简单介绍了DC/DC是什么: 第二节是关于DC/DC的常见的疑问答疑,非常实用: 第三节是针对nRF51822这款芯片电源管理部分的DC/DC.LDO.1.8的详细分析,对 ...

  6. DC/DC与LDO的差别

    转自:http://bbs.eetop.cn/thread-459121-1-1.html 在平时的学习中,我们都有接触LDO和DC/DC这一类的电源产品,但作为学生的我们队这些东西可能了解不够深刻, ...

  7. Add margining capability to a dc/dc converter

    You can easily add margining capability—that is, the ability to digitally adjust the output voltage— ...

  8. DC DC降壓變換器ic 工作原理

    目前DC/DC轉化器大致可分為:升壓型dc dc變化器.降壓型dc dc變化器及可升壓又可降壓dc dc變換器.我們今天主要提一下降壓型dc dc變換器的原理: 見下圖降壓變換器原理圖如圖1所示, 當 ...

  9. DC DC電路電感的選擇

    注:只有充分理解電感在DC/DC電路中發揮的作用,才能更優的設計DC/DC電路.本文還包括對同步DC/DC及異步DC/DC概念的解釋.   DCDC電路電感的選擇 簡介 在開關電源的設計中電感的設計為 ...

随机推荐

  1. 在Linux上安装pycharm

    1.首先在官网下载pycharm并进行提取,将提取的文件夹放在/usr下面(或者任意位置) 2.然后vi /etc/hosts 编辑 将0.0.0.0 account.jetbrains.com添加到 ...

  2. C/C++——[02] 运算符和表达式

    C/C++中表示数据运算的符号称为“运算符”.运算符所用到的操作数个数,称为运算符的“目数”. C/C++语言的运算符有赋值运算符.算术运算符.逻辑运算符.位运算符等多类. 将变量.常量等用运算符连接 ...

  3. Nginx常见错误及处理方法

    转载:https://www.cnblogs.com/liyongsan/p/6795851.html 404 bad request 一般原因:请求的Header过大 解决方法:配置nginx.co ...

  4. .Net Core 部署到 CentOS7 64 位系统中的步骤

    建议使用 root 管理员账户操作 1.安装工具 1.apache 2..Net Core(dotnet-sdk-2.0) 3.Supervisor(进程管理工具,目的是服务器一开机就启动服务器 上发 ...

  5. Unity 软件使用事项

    打开旧版工程 目前发现两种方式来触发升级程序: 1.Unity软件启动时选择旧版工程,触发更新 2.直接打开旧版工程的场景文件,触发更新   在使用中发现一种错误做法,不知道是不是共性问题,在此先记录 ...

  6. Fiddler Web Session 列表(1)

    Web Session 列表 位置: Web Session 列表 位于Fiddler界面的左侧 ,是Fiddler所抓取到的所有Session会话的列表集合. Web Session 列表 栏名词解 ...

  7. JS模块化规范CMD之SeaJS

    1. 在接触规范之前,我们用模块化来封装代码大多为如下: ;(function (形参模块名, 依赖项, 依赖项) { // 通过 形参模块名 修改模块 window.模块名 = 形参模块名 })(w ...

  8. win10家庭版和专业版远程桌面出现身份验证错误, 要求的函数不受支持。解决办法【亲测有效】

    1.解决 win10家庭中文版 远程连接:出现身份验证错误 要求的函数不受支持 Windows 5.10日更新后,远程连接出现失败. 提示: 出现身份验证错误.要求的函数不受支持 这可能是由于 Cre ...

  9. html5.2新特性【长期更新】

    先来说几个新定义: 1.p标签里只能是文字内容,不能在里面使用浮动,定位这些特性了.语义化加强,p标签就是文字标签. 2.legend以前只能是纯文本,新版可以加标签了,很爽吧. <fields ...

  10. java.lang.ClassCastException: android.widget.ImageButton异常处理

    在调程序时总是出现异常关闭的现象,log显示: 03-26 07:58:09.528: E/AndroidRuntime(398): Caused by: java.lang.ClassCastExc ...