Introduction to Differential Equations,Exercise 1.1,1.5,1.6,1.8,1.9,1.10
As noted,if $z=x+iy$,$x,y\in\mathbf{R}$,then $|z|=\sqrt{x^2+y^2}$ is equivalent to $|z|^2=z\overline{z}$.Use this to show that if also $w\in\mathbf{C}$,
$$
|zw|=|z|\cdot|w|.
$$
Solve:
$|zw|^{2}=(zw)\cdot
(\overline{zw})=(zw)\cdot(\overline{z}\cdot\overline{w})=(z\cdot \overline{z})\cdot(w\cdot\overline{w})=|z|^{2}|w|^2$.
Note that
\begin{align*}
|z+w|^2&=(z+w)(\overline{z}+\overline{w})
\\&=|z|^2+|w|^2+w\overline{z}+z\overline{w}
\\&=|z|^2+|w|^2+2\mathbf{Re}zw.
\end{align*}
Show that $\mathbf{Re}(zw)\leq |zw|$ and use this in concert with an expansion of $(|z|+|w|)^2$ and the first identity above to deduce that
$$
|z+w|\leq |z|+|w|.
$$
Evaluate
$$
\int_0^y \frac{dx}{1+x^2}.
$$
solve:Let $x=\tan\theta$.Then
$$
\int_0^y \frac{dx}{1+x^2}=\int_0^y\cos^2\theta dx=\int_0^{\arctan y}\cos^2\theta \frac{d\theta}{\cos^2\theta}=\arctan y.
$$
Evaluate
$$
\int_0^y \frac{dx}{\sqrt{1-x^2}}.
$$
Solve:Let $x=\cos t$,where $t\in [0,\pi]$.Then
$$\int_0^y \frac{dx}{\sin t}=\int_{\frac{\pi}{2}}^{\arccos y}-1dt=\frac{\pi}{2}-\arccos y.$$
1.8 Set
$$
\cosh t=\frac{1}{2}(e^t+e^{-t}),\sinh t=\frac{1}{2}(e^t-e^{-t}).
$$
Show that
$$
\frac{d}{dt}\cosh t=\sinh t,\frac{d}{dt}\sinh t=\cosh t,
$$
and
$$
\cosh^2t-\sinh^2t=1.
$$
Proof:Simple.
1.9 Evaluate
$$
\int_0^y \frac{dx}{\sqrt{1+x^2}}.
$$
Solve:Let $x=\sinh t$,so
$$
\int_0^y \frac{dx}{\cosh t}=\int_0^{\sinh^{-1} y}1 dt=\ln (y+\sqrt{1+y^2}).
$$
1.10 Evaluate
$$
\int_0^y \sqrt{1+x^2}dx.
$$
Solve:Let $x=\sinh t$,then
$$
\int_0^y \sqrt{1+x^2}dx=\int_0^{\ln (y+\sqrt{1+y^2})} \cosh^{2} t
dt=\frac{1}{2}\int_0^{\ln(y+\sqrt{1+y^2})}(\cosh 2t+1)dt=\frac{y
\sqrt{1+y^2}+\ln (y+\sqrt{1+y^2})}{2}.
$$
Introduction to Differential Equations,Exercise 1.1,1.5,1.6,1.8,1.9,1.10的更多相关文章
- symmetry methods for differential equations,exercise 1.4
tex文档: \documentclass[a4paper, 12pt]{article} % Font size (can be 10pt, 11pt or 12pt) and paper size ...
- Introduction to Differential Equations,Michael E.Taylor,Page 3,4 注记
此文是对 [Introduction to Differential Equations,Michael E.Taylor] 第3页的一个注记.在该页中,作者给了微分方程$$\frac{dx}{dt} ...
- [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答
1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...
- A Basic Course in Partial Differential Equations
A Basic Course in Partial Differential Equations, Qing Han, 2011 [下载说明:点击链接,等待5秒, 点击右上角的跳过广告后调至下载页面, ...
- 【线性代数】6-3:微分方程的应用(Applications to Differential Equations)
title: [线性代数]6-3:微分方程的应用(Applications to Differential Equations) categories: Mathematic Linear Algeb ...
- NIPS2018最佳论文解读:Neural Ordinary Differential Equations
NIPS2018最佳论文解读:Neural Ordinary Differential Equations 雷锋网2019-01-10 23:32 雷锋网 AI 科技评论按,不久前,NeurI ...
- An Introduction to Differential Privacy
原文链接:An Introduction to Differential Privacy 差分隐私算法可以允许分析人员执行良性的聚合分析,同时保证个人隐私得到切实的保护.. 背景数据分析中的隐私保护技 ...
- Solving ordinary differential equations I(Nonstiff Problems),Exercise 1.2:A wrong solution
(Newton 1671, “Problema II, Solutio particulare”). Solve the total differential equation $$3x^2-2ax+ ...
- Solving ordinary differential equations I(nonstiff problems),exercise 1.1
Solve equation $y'=1-3x+y+x^2+xy$ with another initial value $y(0)=1$. Solve: We solve this by using ...
随机推荐
- spring boot 异常(exception)处理
Spring Boot 集成教程 Spring Boot 介绍 Spring Boot 开发环境搭建(Eclipse) Spring Boot Hello World (restful接口)例子 sp ...
- hadoop搭建一:虚拟机网络配置和基础(未完成)
基于VMware 15+CentOS 7+Hadoop 2.6,hadoop的搭建主要用于个人学习,水平有限. hadoop搭建一:虚拟机网络配置和基础 hadoop搭建二:hadoop全分布搭建 h ...
- 尝试用kotlin做一个app(一)
1.先添加一下anko库 依赖:implementation "org.jetbrains.anko:anko:$anko_version" 版本:ext.anko_version ...
- 渗透测试 - HPP数据污染 - 原理 | 场景
Web服务器 参数获取函数 获取到的参数 PHP/Apache $_GET(“par”) Last JSP/Tomcat Request.getParameter(“par”) ...
- python 发送邮件,并且带附件
#!/usr/bin/pythonfrom email.mime.text import MIMETextfrom email.mime.multipart import MIMEMultiparti ...
- 谈IO中的阻塞和非阻塞,同步和异步及三种IO模型
什么是同步和异步? 烧水,我们都是通过热水壶来烧水的.在很久之前,科技还没有这么发达的时候,如果我们要烧水,需要把水壶放到火炉上,我们通过观察水壶内的水的沸腾程度来判断水有没有烧开.随着科技的发展,现 ...
- Python 安装gevent,在导入gevent之后就报错了
错误信息如下 RuntimeWarning: greenlet.greenlet size changed, may indicate binary incompatibility. Expected ...
- tensorflow 分布式训练
TF实现分布式流程 1.创建集群 ClusterSpec & Server cluster = tf.train.ClusterSpec({"ps": ps_hosts, ...
- [RoarCTF 2019]Easy Calc-协议层攻击之HTTP请求走私
0X01:什么是HTTP请求走私 HTTP请求走私属于协议层攻击,是服务器漏洞的一种. HTTP请求走私是一种干扰网站处理从一个或多个用户接收的HTTP请求序列的方式的技术.使攻击者可以绕过安全控制, ...
- 苹果下架2.5万赌博APP!一场净化风暴正在迅速成型
当下智能手机发展得如火如荼,但对于大众来说,体验终究还是要落到包罗万千的APP上.APP身为智能手机的灵魂,全面渗入了大众的工作.生活.娱乐.学习等多个方面.每一个APP的背后,其实都在打开着一扇通往 ...