As noted,if $z=x+iy$,$x,y\in\mathbf{R}$,then $|z|=\sqrt{x^2+y^2}$ is equivalent to $|z|^2=z\overline{z}$.Use this to show that if also $w\in\mathbf{C}$,
$$
|zw|=|z|\cdot|w|.
$$

Solve:
  $|zw|^{2}=(zw)\cdot
  (\overline{zw})=(zw)\cdot(\overline{z}\cdot\overline{w})=(z\cdot \overline{z})\cdot(w\cdot\overline{w})=|z|^{2}|w|^2$.

Note that
\begin{align*}
  |z+w|^2&=(z+w)(\overline{z}+\overline{w})
\\&=|z|^2+|w|^2+w\overline{z}+z\overline{w}
\\&=|z|^2+|w|^2+2\mathbf{Re}zw.
\end{align*}
Show that $\mathbf{Re}(zw)\leq |zw|$ and use this in concert with an expansion of $(|z|+|w|)^2$ and the first identity above to deduce that
$$
|z+w|\leq |z|+|w|.
$$


Evaluate
$$
\int_0^y \frac{dx}{1+x^2}.
$$

solve:Let $x=\tan\theta$.Then
$$
\int_0^y \frac{dx}{1+x^2}=\int_0^y\cos^2\theta dx=\int_0^{\arctan y}\cos^2\theta \frac{d\theta}{\cos^2\theta}=\arctan y.
$$


Evaluate
$$
\int_0^y \frac{dx}{\sqrt{1-x^2}}.
$$
Solve:Let $x=\cos t$,where $t\in [0,\pi]$.Then

$$\int_0^y \frac{dx}{\sin t}=\int_{\frac{\pi}{2}}^{\arccos y}-1dt=\frac{\pi}{2}-\arccos y.$$

1.8 Set
$$
\cosh t=\frac{1}{2}(e^t+e^{-t}),\sinh t=\frac{1}{2}(e^t-e^{-t}).
$$
Show that
$$
\frac{d}{dt}\cosh t=\sinh t,\frac{d}{dt}\sinh t=\cosh t,
$$
and
$$
\cosh^2t-\sinh^2t=1.
$$

Proof:Simple.

1.9 Evaluate
$$
\int_0^y \frac{dx}{\sqrt{1+x^2}}.
$$

Solve:Let $x=\sinh t$,so
$$
\int_0^y \frac{dx}{\cosh t}=\int_0^{\sinh^{-1} y}1 dt=\ln (y+\sqrt{1+y^2}).
$$

1.10 Evaluate
$$
\int_0^y \sqrt{1+x^2}dx.
$$

Solve:Let $x=\sinh t$,then
$$
\int_0^y \sqrt{1+x^2}dx=\int_0^{\ln (y+\sqrt{1+y^2})} \cosh^{2} t
dt=\frac{1}{2}\int_0^{\ln(y+\sqrt{1+y^2})}(\cosh 2t+1)dt=\frac{y
  \sqrt{1+y^2}+\ln (y+\sqrt{1+y^2})}{2}.
$$

Introduction to Differential Equations,Exercise 1.1,1.5,1.6,1.8,1.9,1.10的更多相关文章

  1. symmetry methods for differential equations,exercise 1.4

    tex文档: \documentclass[a4paper, 12pt]{article} % Font size (can be 10pt, 11pt or 12pt) and paper size ...

  2. Introduction to Differential Equations,Michael E.Taylor,Page 3,4 注记

    此文是对 [Introduction to Differential Equations,Michael E.Taylor] 第3页的一个注记.在该页中,作者给了微分方程$$\frac{dx}{dt} ...

  3. [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答

    1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...

  4. A Basic Course in Partial Differential Equations

    A Basic Course in Partial Differential Equations, Qing Han, 2011 [下载说明:点击链接,等待5秒, 点击右上角的跳过广告后调至下载页面, ...

  5. 【线性代数】6-3:微分方程的应用(Applications to Differential Equations)

    title: [线性代数]6-3:微分方程的应用(Applications to Differential Equations) categories: Mathematic Linear Algeb ...

  6. NIPS2018最佳论文解读:Neural Ordinary Differential Equations

    NIPS2018最佳论文解读:Neural Ordinary Differential Equations 雷锋网2019-01-10 23:32     雷锋网 AI 科技评论按,不久前,NeurI ...

  7. An Introduction to Differential Privacy

    原文链接:An Introduction to Differential Privacy 差分隐私算法可以允许分析人员执行良性的聚合分析,同时保证个人隐私得到切实的保护.. 背景数据分析中的隐私保护技 ...

  8. Solving ordinary differential equations I(Nonstiff Problems),Exercise 1.2:A wrong solution

    (Newton 1671, “Problema II, Solutio particulare”). Solve the total differential equation $$3x^2-2ax+ ...

  9. Solving ordinary differential equations I(nonstiff problems),exercise 1.1

    Solve equation $y'=1-3x+y+x^2+xy$ with another initial value $y(0)=1$. Solve: We solve this by using ...

随机推荐

  1. arm 裸机学习笔记

    位置无关码 bl 是位置无关码,指令中带的数值是,编译的时候,编译器计算好的,需要跳转的位置减去 bl 指令所在位置的结果.这样当程序最开始在 4k sram 中运行的时候,跳转的位置是在 0 + o ...

  2. SQL约束攻击

    本文转载自https://blog.csdn.net/kkr3584/article/details/69223010 目前值得高兴的是,开发者在建立网站时,已经开始关注安全问题了--几乎每个开发者都 ...

  3. StringBuffer类、StringBuilder类详解

    StringBuffer是一个字符串缓冲区,是一个容器,而且长度可变,可以直接操作多个数据类型, 最终会通过toString()方法变成字符串. 容器的功能有: 1.存储 public StringB ...

  4. mysql第四篇:数据操作

    第四篇:数据操作 一.数据操作介绍 在MySQL管理软件中,可以通过SQL语句中的DML语言来实现数据的操作 1.INSERT实现数据的插入 2.UPDATE实现数据的更新 3.DELETE实现数据的 ...

  5. Invalid bean definition with name 'dataSource' defined in class path resource [applicationContext.xml]

    启动tomcat,访问一个web项目失败,查看日志,发现异常信息: 18-Jul-2019 15:22:16.822 严重 [main] org.apache.catalina.core.Standa ...

  6. NumPy - 数组(定义,拼接)

    NumPy 教程(数组) set_printoptions(threshold='nan') NumPy的数组中比较重要ndarray对象属性有: ndarray.ndim:数组的维数(即数组轴的个数 ...

  7. POJ 1164:The Castle

    The Castle Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6677   Accepted: 3767 Descri ...

  8. POJ 2488:A Knight's Journey 深搜入门之走马观花

    A Knight's Journey Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 35342   Accepted: 12 ...

  9. AD软件将PCB中的元器件旋转45度

  10. winform显示、隐藏任务栏及开始菜单

    private const int SW_HIDE = 0; //隐藏 private const int SW_RESTORE = 9;//显示 /// <summary> /// 获取 ...