Boudreaux likes to multitask, especially when it comes to using his computer. Never satisfied with just running one application at a time, he usually runs nine applications, each in its own window. Due to limited screen real estate, he overlaps these windows and brings whatever window he currently needs to work with to the foreground. If his screen were a 4 x 4 grid of squares, each of Boudreaux's windows would be represented by the following 2 x 2 windows:

1 1 . .
1 1 . .
. . . .
. . . .
. 2 2 .
. 2 2 .
. . . .
. . . .
. . 3 3
. . 3 3
. . . .
. . . .
. . . .
4 4 . .
4 4 . .
. . . .
. . . .
. 5 5 .
. 5 5 .
. . . .
. . . .
. . 6 6
. . 6 6
. . . .
. . . .
. . . .
7 7 . .
7 7 . .
. . . .
. . . .
. 8 8 .
. 8 8 .
. . . .
. . . .
. . 9 9
. . 9 9

When Boudreaux brings a window to the foreground, all of its squares come to the top, overlapping any squares it shares with other windows. For example, if window 1and then window 2 were brought to the foreground, the resulting representation would be:

1 2 2 ?
1 2 2 ?
? ? ? ?
? ? ? ?
If window 4 were then brought to the foreground:
1 2 2 ?
4 4 2 ?
4 4 ? ?
? ? ? ?

. . . and so on . . . 
Unfortunately, Boudreaux's computer is very unreliable and crashes often. He could easily tell if a crash occurred by looking at the windows and seeing a graphical representation that should not occur if windows were being brought to the foreground correctly. And this is where you come in . . .

Input

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted according to the following description, and there will be no blank lines separating data sets.

A single data set has 3 components: 

  1. Start line - A single line: 
    START
  2. Screen Shot - Four lines that represent the current graphical representation of the windows on Boudreaux's screen. Each position in this 4 x 4 matrix will represent the current piece of window showing in each square. To make input easier, the list of numbers on each line will be delimited by a single space.
  3. End line - A single line: 
    END

After the last data set, there will be a single line: 
ENDOFINPUT

Note that each piece of visible window will appear only in screen areas where the window could appear when brought to the front. For instance, a 1 can only appear in the top left quadrant.

Output

For each data set, there will be exactly one line of output. If there exists a sequence of bringing windows to the foreground that would result in the graphical representation of the windows on Boudreaux's screen, the output will be a single line with the statement:

THESE WINDOWS ARE CLEAN

Otherwise, the output will be a single line with the statement: 
THESE WINDOWS ARE BROKEN

Sample Input

START
1 2 3 3
4 5 6 6
7 8 9 9
7 8 9 9
END
START
1 1 3 3
4 1 3 3
7 7 9 9
7 7 9 9
END
ENDOFINPUT

Sample Output

THESE WINDOWS ARE CLEAN
THESE WINDOWS ARE BROKEN
题目大意 :题目中给出了几幅图,判断给出的矩阵能否有题目中的图片叠加而成。
题解:该题难在构图与题意上。如果能够由每个图片叠加而成那么一定会有个先后。也就是说,一定能用拓扑排序将其排列好。如果拓扑排序没有成功排出,输出 THESE WINDOWS ARE BROKEN。否则输出THESE WINDOWS ARE CLEAN
还有一个难点就是在构图上。我们只需要记录每个数字的左上角的坐标,然后进行搜索见图,即判断该数字本身位置有没有被覆盖,右边下边以及右下角有没有被覆盖。被覆盖的话,就用邻接矩阵标记为1.并记录节点的 入度
//判断所有位置的覆盖情况
//如果a覆盖b 则构造一条边edge[b][a]=1 最后得到一个图
//这个图一定是无环的 如果有环则表示a覆盖b b又覆盖a
//即显示不正常
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
const int N=1E5+;
int arr[][]; int arr2[][]={{,}, {,},{,},{,}, {,},{,},{,}, {,},{,},{,} };// 每个区域的左上角
int dir[][]={{,},{,},{,},{,}};//对应四个方向 本身,右边,下边,还有右下角 int map[][];
int in[N];
int main(){
string a;
while(cin>>a&&a!="ENDOFINPUT"){ memset(in,,sizeof(in));
memset(arr,,sizeof(arr));
memset(map,,sizeof(map)); for(int i=;i<=;i++)
for(int j=;j<=;j++){
scanf("%d",&arr[i][j]);
} string b;
cin>>b;
//建图
for(int i=;i<=;i++){
for(int j=;j<;j++){
int dx=arr2[i][]+dir[j][];
int dy=arr2[i][]+dir[j][];
int dz=arr[dx][dy];
if(dz!=i&&map[dz][i]==){
map[dz][i]=;
in[i]++;
}
}
} queue<int >que;
for(int i=;i<=;i++){
if(in[i]==){
que.push(i);
}
} int sum=;
while(que.size()){
int xx=que.front();
que.pop();
sum++;
for(int i=;i<=;i++){
if(map[xx][i]==){
in[i]--;
if(in[i]==){
que.push(i);
}
}
}
} if(sum==) puts("THESE WINDOWS ARE CLEAN");
else puts("THESE WINDOWS ARE BROKEN");
}
return ;
}

Windows Pains poj 2585的更多相关文章

  1. poj 2585 Window Pains 解题报告

    Window Pains Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2027   Accepted: 1025 Desc ...

  2. poj 2585 Window Pains 暴力枚举排列

    题意: 在4*4的格子中有9个窗体,窗体会覆盖它之下的窗体,问是否存在一个窗体放置的顺序使得最后的结果与输入同样. 分析: 在数据规模较小且不须要剪枝的情况下能够暴力(思路清晰代码简单),暴力一般分为 ...

  3. POJ 2585.Window Pains 拓扑排序

    Window Pains Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1888   Accepted: 944 Descr ...

  4. POJ 2585 Window Pains 题解

    链接:http://poj.org/problem?id=2585 题意: 某个人有一个屏幕大小为4*4的电脑,他很喜欢打开窗口,他肯定打开9个窗口,每个窗口大小2*2.并且每个窗口肯定在固定的位置上 ...

  5. POJ 2585:Window Pains(拓扑排序)

    Window Pains Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2524   Accepted: 1284 Desc ...

  6. zoj 2193 poj 2585 Window Pains

    拓扑排序. 深刻体会:ACM比赛的精髓之处不在于学了某个算法或数据结构,而在于知道这个知识点但不知道这个问题可以用这个知识去解决!一看题目,根本想不到是拓扑排序.T_T...... #include& ...

  7. 【POJ 2585】Window Pains 拓扑排序

    Description . . . and so on . . . Unfortunately, Boudreaux's computer is very unreliable and crashes ...

  8. Window Pains(poj 2585)

    题意: 一个屏幕要同时打开9个窗口,每个窗口是2*2的矩阵,整个屏幕大小是9*9,每个窗口位置固定. 但是是否被激活(即完整显示出来)不确定. 给定屏幕状态,问是否可以实现显示. 分析:拓扑排序,把完 ...

  9. [POJ 2585] Window Pains 拓朴排序

    题意:你现在有9个2*2的窗口在4*4的屏幕上面,由于这9这小窗口叠放顺序不固定,所以在4*4屏幕上有些窗口只会露出来一部分. 如果电脑坏了的话,那么那个屏幕上的各小窗口叠放会出现错误.你的任务就是判 ...

随机推荐

  1. ThreadPoolTaskExecutor 中 corePoolSize vs. maxPoolSize

    1. 概览 Spring中的 ThreadPoolTaskExecutor 是一个 JavaBean ,提供围绕java.util.concurrent.ThreadPoolExecutor 的抽象实 ...

  2. 写爬虫爬了3w条职位数据,看看当前招聘形势 | 开源

    最近有不少程序员又开始找工作了,为了了解目前技术类各职位的数量.薪资.招聘公司.岗位职责及要求,我爬取了拉勾网北上广深4个城市的招聘数据,共3w条.职位包括:人工智能(AI).大数据.数据分析.后端( ...

  3. 强化学习之七:Visualizing an Agent’s Thoughts and Actions

    本文是对Arthur Juliani在Medium平台发布的强化学习系列教程的个人中文翻译,该翻译是基于个人分享知识的目的进行的,欢迎交流!(This article is my personal t ...

  4. 在Fedora中安装OpenCV-Python | 二

    目标 在本教程中 我们将学习在你的Fedora系统中设置OpenCV-Python.针对Fedora 18(64位)和Fedora 19(32位)进行以下步骤. 介绍 可以通过两种方式在Fedora中 ...

  5. NLPer入门指南 | 完美第一步

    介绍 你对互联网上的大量文本数据着迷吗?你是否正在寻找处理这些文本数据的方法,但不确定从哪里开始?毕竟,机器识别的是数字,而不是我们语言中的字母.在机器学习中,这可能是一个棘手的问题. 那么,我们如何 ...

  6. HDU - 1999 不可摸数,快速求因子和

    题意:定义s[m]为m内的因子的和,给定一个n,判断是否有s[m]==n,若没有,则是不可摸数. 思路:首先要打表求出s[m]的值,标记这些出现过的值. 打表求因子和: for(int i=1;i&l ...

  7. 一夜搞懂 | JVM 类加载机制

    前言 本文已经收录到我的Github个人博客,欢迎大佬们光临寒舍: 我的GIthub博客 学习导图 一.为什么要学习类加载机制? 今天想跟大家唠嗑唠嗑Java的类加载机制,这是Java的一个很重要的创 ...

  8. 编译原理:DFA最小化,语法分析初步

    1.将DFA最小化:教材P65 第9题   解析: 2.构造以下文法相应的最小的DFA S→ 0A|1B A→ 1S|1 B→0S|0 解析: S→ 0A|1B →S → 0(1S|1)|1(0S|0 ...

  9. 模板字符串原理,原生js实现字符串模板

    在使用模板字符串的时候使用的是 '{{}}'形式进行书写,本文则向各位解密这么写的原因 初体验正则 首先要先明白正则表达式中exec的使用 例如: let str = 'axu1997@qq.com' ...

  10. nginx代理图片上传以及访问

    nginx代理图片上传 首先需要利用nginx代理图片访问参考 https://www.cnblogs.com/TJ21/p/12609017.html 编写接受文件的controller @Post ...