先看函数参数:

torch.flatten(input, start_dim=0, end_dim=-1)

input: 一个 tensor,即要被“推平”的 tensor。

start_dim: “推平”的起始维度。

end_dim: “推平”的结束维度。

首先如果按照 start_dim 和 end_dim 的默认值,那么这个函数会把 input 推平成一个 shape 为 $[n]$ 的tensor,其中 $n$ 即 input 中元素个数。

如果我们要自己设定起始维度和结束维度呢?

我们要先来看一下 tensor 中的 shape 是怎么样的:

t = torch.tensor([[[1, 2, 2, 1],
[3, 4, 4, 3],
[1, 2, 3, 4]],
[[5, 6, 6, 5],
[7, 8, 8, 7],
[5, 6, 7, 8]]])
print(t, t.shape)

运行结果:

tensor([[[1, 2, 2, 1],
[3, 4, 4, 3],
[1, 2, 3, 4]], [[5, 6, 6, 5],
[7, 8, 8, 7],
[5, 6, 7, 8]]])
torch.Size([2, 3, 4])

我们可以看到,最外层的方括号内含两个元素,因此 shape 的第一个值是 $2$;类似地,第二层方括号里面含三个元素,shape 的第二个值就是 $3$;最内层方括号里含四个元素,shape 的第二个值就是 $4$。

示例代码:

x = torch.flatten(t, start_dim=1)
print(x, x.shape) y = torch.flatten(t, start_dim=0, end_dim=1)
print(y, y.shape)

运行结果:

tensor([[1, 2, 2, 1, 3, 4, 4, 3, 1, 2, 3, 4],
[5, 6, 6, 5, 7, 8, 8, 7, 5, 6, 7, 8]]) torch.Size([2, 12])
tensor([[1, 2, 2, 1],
[3, 4, 4, 3],
[1, 2, 3, 4],
[5, 6, 6, 5],
[7, 8, 8, 7],
[5, 6, 7, 8]]) torch.Size([6, 4])

可以看到,当 start_dim = $1$ 而 end_dim = $-1$ 时,它把第 $1$ 个维度到最后一个维度全部推平合并了。而当 start_dim = $0$ 而 end_dim = $1$ 时,它把第 $0$ 个维度到第 $1$ 个维度全部推平合并了。

(这里注意的一点是,维度是从第 $0$ 维开始的)

而且,pytorch中的 torch.nn.Flatten 类和 torch.Tensor.flatten 方法其实都是基于上面的 torch.flatten 函数实现的。

关于torch.flatten的笔记的更多相关文章

  1. 深度学习框架 Torch 7 问题笔记

    深度学习框架 Torch 7 问题笔记 1. 尝试第一个 CNN 的 torch版本, 代码如下: -- We now have 5 steps left to do in training our ...

  2. numpy中flatten学习笔记

    ndarray.flatten() 用法 用于返回一个折叠成一维的数组.该函数只能适用于numpy对象,即array或者mat,普通的list列表是不行的. 例子 # coding=utf-8 fro ...

  3. 训练一个图像分类器demo in PyTorch【学习笔记】

    [学习源]Tutorials > Deep Learning with PyTorch: A 60 Minute Blitz > Training a Classifier   本文相当于 ...

  4. 关于torchvision.models中VGG的笔记

    VGG 主要有两种结构,分别是 VGG16 和 VGG19,两者并没有本质上的区别,只是网络深度不一样. 对于给定的感受野,采用堆积的小卷积核是优于采用大的卷积核的,因为多层非线性层可以增加网络深度来 ...

  5. [深度学习] Pytorch学习(一)—— torch tensor

    [深度学习] Pytorch学习(一)-- torch tensor 学习笔记 . 记录 分享 . 学习的代码环境:python3.6 torch1.3 vscode+jupyter扩展 #%% im ...

  6. [PyTorch 学习笔记] 3.1 模型创建步骤与 nn.Module

    本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/module_containers.py 这篇文章来看下 ...

  7. tensorflow/pytorch/mxnet的pip安装,非源代码编译,基于cuda10/cudnn7.4.1/ubuntu18.04.md

    os安装 目前对tensorflow和cuda支持最好的是ubuntu的18.04 ,16.04这种lts,推荐使用18.04版本.非lts的版本一般不推荐. Windows倒是也能用来装深度GPU环 ...

  8. 轻量级CNN模型之squeezenet

    SqueezeNet 论文地址:https://arxiv.org/abs/1602.07360 和别的轻量级模型一样,模型的设计目标就是在保证精度的情况下尽量减少模型参数.核心是论文提出的一种叫&q ...

  9. Pytorch学习之源码理解:pytorch/examples/mnists

    Pytorch学习之源码理解:pytorch/examples/mnists from __future__ import print_function import argparse import ...

随机推荐

  1. 虚拟机上安装SVN服务

    服务器端安装SVN(centos)1.yum install subversion2.svn的相关配置1创建一个SVN仓库(所有项目存放与管理)mkdir -p /svndata/projects2. ...

  2. Day5-T2

    原题目 根据社会学研究表明,人们都喜欢和自己身高相近的人做朋友. 现在有 N 名身高各不相同的同学依次走进教室. 调查人员想预测每个人在走入教室的瞬间最想和 已经在教室的哪个人做朋友.当有两名同学和这 ...

  3. 7.8 Varnish Log

  4. 从MSSQL表中删除重复项

    declare @ids int=1 declare @count int while @ids<471 begin select @count=COUNT(*) From LotNO wher ...

  5. numpy.linspace使用详解

    numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None) 在指定的间隔内返回均匀间隔的数字. 返回nu ...

  6. ACM-小偷的背包

    题目描述:小偷的背包   设有一个背包可以放入的物品重量为S,现有n件物品,重量分别是w1,w2,w3,...,wn.问能否从这n件物品中选择若干件放入背包中,使得放入的重量之和正好为S.如果有满足条 ...

  7. Problem J. Joseph’s Problem 约瑟夫问题--余数之和

    链接:https://vjudge.net/problem/UVA-1363 题意:给出n  k,当 i 属于 1~n 时 ,求解 n% i 的和 n 和 k 的范围都是 1 到 10^9; 商相同 ...

  8. 08 SSM整合案例(企业权限管理系统):05.SSM整合案例的基本介绍

    04.AdminLTE的基本介绍 05.SSM整合案例的基本介绍 06.产品操作 07.订单操作 08.权限控制 09.用户和角色操作 10.权限关联 11.AOP日志 05.SSM整合案例的基本介绍 ...

  9. P 1008 说反话

    转跳点:

  10. sprintf与sscanf用法举例

    一.sscanf 从tmp中读取a,b,c. int main(){ ]; int a; double b; ]; while(gets(tmp) != NULL){ sscanf(tmp, &quo ...