在近期的 Apache Kylin × Apache Hudi Meetup直播上,Apache Kylin PMC Chair 史少锋和 Kyligence 解决方案工程师刘永恒就 Hudi + Kylin 的准实时数仓实现进行了介绍与演示。下文是分享现场的回顾。

我的分享主题是《基于 Hudi 和 Kylin 构建准实时、高性能数据仓库》,除了讲义介绍,还安排了 Demo 实操环节。下面是今天的日程:

01 数据库、数据仓库

先从基本概念开始。我们都知道数据库和数据仓库,这两个概念都已经非常普遍了。数据库 Database,简称 DB,主要是做 OLTP(online transaction processing),也就是在线的交易,如增删改;数据仓库 Data Warehouse,简称 DW,主要是来做OLAP(online analytics processing),也就是在线数据分析。OLTP 的典型代表是 Oracle、MySQL,OLAP 则像 Teradata、Greenplum,近些年有 ClickHouse、Kylin 等。

数据库和数据仓库两者在存储实现上是不一样的,数据库一般是按行存,这样可以按行来增加、修改;数据仓库是按列来存储,是为了分析的时候可以高效访问大量的数据,同时跳过不需要的列;这种存储差异导致两个系统难以统一,数据从数据库进入到数据仓库需要一条链路去处理。

02 数据湖

近些年出现了数据湖(Data Lake)的概念,简单来说数据湖可以存储海量的、不同格式、汇总或者明细的数据,数据量可以达到 PB 到 EB 级别。企业不仅可以使用数据湖做分析,还可以用于未来的或未曾预判到的场景,因此需要的原始数据存储量是非常大的,而且模式是不可预知的。数据湖产品典型的像 Hadoop 就是早期的数据湖了,现在云上有很多的数据湖产品,比方 Amazon  S3,Azure  Blob  store,阿里云 OSS,以及各家云厂商都有自己的存储服务。有了数据湖之后,企业大数据处理就有了一个基础平台,非常多的数据从源头收集后都会先落到数据湖上,基于数据湖再处理和加载到不同的分析库去。

但是,数据湖开始设计主要是用于数据的存储,解决的是容量的水平扩展性、数据的持久性和高可用性,没有太多考虑数据的更新和删除。例如 HDFS 上通常是将文件分块(block)存储,一个 block 通常一两百兆;S3 同样也是类似,大的 block 可以节省管理开销,并且这些文件格式不一,通常没有高效的索引。如果要修改文件中的某一行记录,对于数据湖来说是非常难操作的,因为它不知道要修改的记录在哪个文件的哪个位置,它提供的方式仅仅是做批量替换,代价比较大。

另外一个极端的存储则是像 HBase 这样的,提供高效的主键索引,基于主键就可以做到非常快的插入、修改和删除;但是 HBase 在大范围读的效率比较低,因为它不是真正的列式存储。对于用户来说面临这么两个极端:一边是非常快的读存储(HDFS/S3),一边是非常快速的写存储;如果取中间的均衡比较困难。有的时候却需要有一种位于两者之间的方案:读的效率要高,但写开销不要那么大。

03 数据仓库的加载链路

在有这么一个方案之前,我们怎样能够支撑到数据的修改从 OLTP 到 OLAP 之间准实时同步呢?通常大家会想到,通过 CDC/binlog 把修改增量发出来,但 binlog 怎么样进入到 Hive 中去呢?我们知道 Hive 很难很快地修改一条记录,修改只能把整张表或者整个分区重新写一遍。为了接收和准实时消费 binlog,可能需要引入一个只读的 Database 或 MPP 数据库,专门复制上游业务库的修改;然后再从这个中间的数据库导出数据到数据湖上,供下一个阶段使用。这个方案可以减少对业务库的压力和影响,但依然存在一些问题。

这里有一个生动的例子,是前不久从一个朋友那里看到的,各位可以感受一下。

可以看到在过去的方案是非常复杂的,又要用 MPP 又要用数据湖,还要用 Kylin,在这中间数据频繁的被导出导入,浪费是非常严重的,而且维护成本高,容易出错,因为数据湖和数据库之间的文件格式往往还存在兼容性问题。

04 Hudi:新一代数据湖项目

后来我们注意到 Hudi 这个项目,它的目的就是要在大数据集上支持 Upsert(update+insert)。Hudi 是在大数据存储上的一个数据集,可以将 Change Logs 通过 upsert 的方式合并进 Hudi;Hudi 对上可以暴露成一个普通的 Hive 或 Spark 的表,通过 API 或命令行可以获取到增量修改的信息,继续供下游消费;Hudi 还保管了修改历史,可以做时间旅行或回退;Hudi 内部有主键到文件级的索引,默认是记录到文件的布隆过滤器,高级的有存储到 HBase 索引提供更高的效率。

05 基于 Hudi+Kylin 的准实时数仓实现

有了 Hudi 之后,可以跳过使用中间数据库或 MPP,直接微批次地增量消费 binlog,然后插入到 Hudi;Hudi 内的文件直接存放到 HDFS/S3 上,对用户来说存储成本可以大大降低,不需要使用昂贵的本地存储。Hudi 表可以暴露成一张 Hive 表,这对 Kylin 来说是非常友好,可以让 Kylin 把 Hudi 当一张普通表,从而无缝使用。Hudi 也让我们更容易地知道,从上次消费后有哪些 partition 发生了修改,这样 Kylin 只要刷新特定的 partition 就可以,从而端到端的数据入库的延迟可以降低到1小时以内。从 Uber 多年的经验来说,对大数据的统计分析,入库小于 1 小时在大多数场景下都是可以接受的。

这里再总结一下,使用 Hudi 来做 DW 数据加载的前置存储给我们带来的诸多的好处:首先,它可以支持准实时的插入、修改和删除,对保护用户数据隐私来说是非常关键的(例如 GDPR );它还可以控制小文件,减少对 HDFS 的压力;第二,Hudi 提供了多种访问视图,可以根据需要去选择不同的视图;第三,Hudi 是基于开放生态的,存储格式使用 Parquet 和 Avro,目前主要是使用 Spark 来做数据操作,未来也可以扩展;支持多种查询引擎,所以在生态友好性上来说,Hudi 是远远优于另外几个竞品的。

06 使用 Kyligence Cloud 现场演示

前面是一个基本的介绍,接下来我们做一个 Live Demo,用到 Kyligence Cloud(基于 Kylin 内核)这个云上的大数据分析平台;你可以一键在 Azure/AWS 上来启动分析集群,内置多种大数据组件来做建模加速,可直接从云上存储或云上的数据库抽取数据,提供了自动的监控和运维。

目前 Kyligence Cloud 已经不需要依赖 Hadoop 了,直接使用 VM 来做集群的计算力,内置了 Spark 做分布式计算,使用 S3 做数据存储;还集成了 Kylignece Insight 做可视化分析,底层可以对接常见的数据源,也包括 Hudi,在最新发布版的 Hudi 已经被集成进来了。

接下来,刘永恒将带来 Live Demo,他是从业务库到处数据加载到 Hudi 中,然后 Hudi 随后就可以从这当中来被访问。接下来他会演示做一些数据修改,再把这个数据修改合并到 Hudi,在 Hudi 中就可以看到这些数据的改变,接下来的时间就交给刘永恒。

想了解刘永恒老师的 Demo 详情?请点击播放下方现场回顾视频,拖动进度条至 19:50 的位置,即可开始观看。
 
 

基于 Hudi 和 Kylin 构建准实时高性能数据仓库的更多相关文章

  1. 大数据之Hudi + Kylin的准实时数仓实现

    问题导读:1.数据库.数据仓库如何理解?2.数据湖有什么用途?解决什么问题?3.数据仓库的加载链路如何实现?4.Hudi新一代数据湖项目有什么优势? 在近期的 Apache Kylin × Apach ...

  2. 《基于Apache Kylin构建大数据分析平台》

    Kyligence联合创始人兼CEO,Apache Kylin项目管理委员会主席(PMC Chair)韩卿 武汉市云升科技发展有限公司董事长,<智慧城市-大数据.物联网和云计算之应用>作者 ...

  3. Lyft 基于 Flink 的大规模准实时数据分析平台(附FFA大会视频)

    摘要:如何基于 Flink 搭建大规模准实时数据分析平台?在 Flink Forward Asia 2019 上,来自 Lyft 公司实时数据平台的徐赢博士和计算数据平台的高立博士分享了 Lyft 基 ...

  4. 基于OGG的Oracle与Hadoop集群准实时同步介绍

    版权声明:本文由王亮原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/220 来源:腾云阁 https://www.qclou ...

  5. 【原创】xenomai3.1+linux构建linux实时操作系统-基于X86_64和arm

    版权声明:本文为本文为博主原创文章,转载请注明出处.如有问题,欢迎指正.博客地址:https://www.cnblogs.com/wsg1100/ 目录 一.概要 二.环境准备 1.1 安装内核编译工 ...

  6. 基于 Apache Hudi 和DBT 构建开放的Lakehouse

    本博客的重点展示如何利用增量数据处理和执行字段级更新来构建一个开放式 Lakehouse. 我们很高兴地宣布,用户现在可以使用 Apache Hudi + dbt 来构建开放Lakehouse. 在深 ...

  7. kylin构建cube优化

    前言 下面通过对kylin构建cube流程的分析来介绍cube优化思路. 创建hive中间表 kylin会在cube构建的第一步先构建一张hive的中间表,该表关联了所有的事实表和维度表,也就是一张宽 ...

  8. 使用 DolphinScheduler 调度 Kylin 构建

    本文章经授权转载 Apache Kylin 上游通常有复杂的数据 ETL 过程,如 Hive 入库.数据清洗等:下游有报表刷新,邮件分发等.集成 Apache DolphinScheduler 后,K ...

  9. 10个基于 Ruby on Rails 构建的顶级站点

    本文系国内 ITOM 行业领军企业 OneAPM 工程师翻译整理自 Raviraj Hegde 的文章 Top Sites Built with Ruby on Rails. 就其本身而言,Ruby ...

随机推荐

  1. Fortify Audit Workbench 笔记 SQL Injection SQL注入

    SQL Injection SQL注入 Abstract 通过不可信来源的输入构建动态 SQL 指令,攻击者就能够修改指令的含义或者执行任意 SQL 命令. Explanation SQL injec ...

  2. C#窗体排列方式

    2020-03-11 每日一例第3天 1.设置父窗体属性:IsMdicontainer设置成true; 2.拖入menustrip控件,修改标题栏中的text文字. 3.点击“加载子窗体”设置代码: ...

  3. Open live Writer 直接发布wps文章,优点是可以带上图片

    官方网站: http://openlivewriter.org/ 博客园的设置里面的 MetaWeblog访问地址

  4. SpringBoot 集成MQTT配置

    目录 1. 前言 2. MQTT介绍 3. SpringBoot 集成MQTT 3.1 导入mqtt库 3.2 配置MQTT订阅者 3.3 配置MQTT发布者 3.4 MQTT消息处理和发送 3.4. ...

  5. CKafka如何助力腾讯课堂实现百万消息稳定互动?

    疫情期间,为了保障国内学子的正常学习进度,腾讯课堂积极响应国家“停工不停学”的号召,紧急上线疫情期间专用的“老师极速版”,使广大师生足不出户,即可快速便捷的完成线上开课.面对线上课堂百万量级的互动消息 ...

  6. .NET的资源并不限于.resx文件

    为了构建一个轻量级的资源管理框架以满足简单的本地化(Localization)的需求,我试图直接对现有的Resource编程模型进行扩展.虽然最终没能满足我们的需求,但是这两天也算对.NET如何进行资 ...

  7. sql 语句系列(字符串的遍历嵌入删除与统计)[八百章之第十一章]

    遍历字符串 我觉得首先要提出一个疑问: 一个数据库本身就是用于存储的,遍历字符串究竟有何意义? 先看如何实现的,毕竟sql service 是没有for循环,也没有loop和while的. selec ...

  8. Java与C语言的区别——含面向对象介绍

    很多初学编程的小伙伴或者想要学习编程的小白弄不清C语言和Java的区别.本文就针对萌新们尽量用通俗的语言来介绍一下我所理解的编程语言界的两大巨头. 为什么说是两巨头,介绍之前我们先看一下某度搜索出来的 ...

  9. 破解WIFI教程

    今日主题:如何破解WIFI 准备工具 笔记本一台 usb无线网卡[我用的是小米的] kali系统[可以在虚拟机里装,建议用2019年及以下版本] VMware Workstation15虚拟机安装 可 ...

  10. hdu4587 Two Nodes 求图中删除两个结点剩余的连通分量的数量

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4587 题目给了12000ms,对于tarjan这种O(|V|+|E|)复杂度的算法来说,暴力是能狗住的 ...