欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习、深度学习的知识!

手写数字识别

接下来将会以 MNIST 数据集为例,使用卷积层和池化层,实现一个卷积神经网络来进行手写数字识别,并输出卷积和池化效果。

数据准备

  • MNIST 数据集下载

MNIST 数据集可以从 THE MNIST DATABASE of handwritten digits 的网站直接下载。

网址:http://yann.lecun.com/exdb/mnist/

train-images-idx3-ubyte.gz: 训练集图片

train-labels-idx1-ubyte.gz: 训练集列标

t10k-images-idx3-ubyte.gz: 测试集图片

t10k-labels-idx1-ubyte.gz: 测试集列标

TensorFlow 有加载 MNIST 数据库相关的模块,可以在程序运行时直接加载。

代码如下:

from tensorflow.examples.tutorials.mnist import input_data
import matplotlib.pyplot as pyplot #引入 MNIST 数据集
mnist = input_data.read_data_sets("/tmp/data/", one_hot=False) #选取训练集中的第 1 个图像的矩阵
mnist_one=mnist.train.images[0] #输出图片的维度,结果是:(784,)
print(mnist_one.shape) #因为原始的数据是长度是 784 向量,需要转换成 28*28 的矩阵。
mnist_one_image=mnist_one.reshape((28,28)) #输出矩阵的维度
print(mnist_one_image.shape) #使用 matplotlib 输出为图片
pyplot.imshow(mnist_one_image) pyplot.show()

代码的输出依次是:

1.单个手写数字图片的维度:

(784,)

2.转化为二维矩阵之后的打印结果:

(28, 28)

3.使用 matplotlib 输出为图片

模型实现

TensorFlow conv2d 函数介绍:

tf.nn.conv2d(x, W, strides, padding=’SAME’)

针对输入的 4 维数据 x 计算 2 维卷积。

参数 x:

4 维张量,每一个维度分别是 batch,in_height,in_height,in_channels。

[batch, in_height, in_width, in_channels]

灰度图像只有 2 维来表示每一个像素的值,彩色图像每一个像素点有 3 通道的 RGB 值,所以一个彩色图片转化成张量后是 3 维的,分别是长度,宽度,颜色通道数。又因为每一次训练都是训练都是输入很多张图片,所以,多个 3 维张量组合在一起变成了 4 维张量。

参数 w:

过滤器,因为是二维卷积,所以它的维度是:

[filter_height, filter_width, in_channels, out_channels]

与参数 x 对应,前 3 个参数分别是对应 x 的 filter_height, filter_width, in_channels,最后一个参数是过滤器的输出通道数量。

参数 strides:

1 维长度为 4 的张量,对应参数 x 的 4 个维度上的步长。

参数 padding:

边缘填充方式,主要是 “SAME”, “VALID”,一般使用 “SAME”。

卷积层简单封装
# 池化操作
def conv2d(x, W, b, strides=1):
# Conv2D wrapper, with bias and relu activation
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)
TensorFlow max_pool 函数介绍:

tf.nn.max_pool(x, ksize, strides ,padding)

参数 x:

和 conv2d 的参数 x 相同,是一个 4 维张量,每一个维度分别代表 batch,in_height,in_height,in_channels。

参数 ksize:

池化核的大小,是一个 1 维长度为 4 的张量,对应参数 x 的 4 个维度上的池化大小。

参数 strides:

1 维长度为 4 的张量,对应参数 x 的 4 个维度上的步长。

参数 padding:

边缘填充方式,主要是 “SAME”, “VALID”,一般使用 “SAME”。

接下来将会使用 TensorFlow 实现以下结构的卷积神经网络:

下一篇文章,将会用 TensorFlow 实现这个卷积神经网络。

本篇文章出自http://www.tensorflownews.com,对深度学习感兴趣,热爱Tensorflow的小伙伴,欢迎关注我们的网站!

TensorFlow 卷积神经网络手写数字识别数据集介绍的更多相关文章

  1. 深度学习-使用cuda加速卷积神经网络-手写数字识别准确率99.7%

    源码和运行结果 cuda:https://github.com/zhxfl/CUDA-CNN C语言版本参考自:http://eric-yuan.me/ 针对著名手写数字识别的库mnist,准确率是9 ...

  2. 吴裕雄 python 神经网络——TensorFlow 卷积神经网络手写数字图片识别

    import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...

  3. 实现手写数字识别(数据集50000张图片)比较3种算法神经网络、灰度平均值、SVM各自的准确率—Jason niu

    对手写数据集50000张图片实现阿拉伯数字0~9识别,并且对结果进行分析准确率, 手写数字数据集下载:http://yann.lecun.com/exdb/mnist/ 首先,利用图片本身的属性,图片 ...

  4. Android+TensorFlow+CNN+MNIST 手写数字识别实现

    Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...

  5. 基于TensorFlow的MNIST手写数字识别-初级

    一:MNIST数据集    下载地址 MNIST是一个包含很多手写数字图片的数据集,一共4个二进制压缩文件 分别是test set images,test set labels,training se ...

  6. 基于tensorflow的MNIST手写数字识别(二)--入门篇

    http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...

  7. 基于Numpy的神经网络+手写数字识别

    基于Numpy的神经网络+手写数字识别 本文代码来自Tariq Rashid所著<Python神经网络编程> 代码分为三个部分,框架如下所示: # neural network class ...

  8. Tensorflow之MNIST手写数字识别:分类问题(1)

    一.MNIST数据集读取 one hot 独热编码独热编码是一种稀疏向量,其中:一个向量设为1,其他元素均设为0.独热编码常用于表示拥有有限个可能值的字符串或标识符优点:   1.将离散特征的取值扩展 ...

  9. Tensorflow实现MNIST手写数字识别

    之前我们讲了神经网络的起源.单层神经网络.多层神经网络的搭建过程.搭建时要注意到的具体问题.以及解决这些问题的具体方法.本文将通过一个经典的案例:MNIST手写数字识别,以代码的形式来为大家梳理一遍神 ...

随机推荐

  1. 《数据结构与算法》—— O(3N)=O(N) ?

    上帝的磨盘转动很慢,但是却磨得很细. --毛姆 本文已经收录至我的GitHub,欢迎大家踊跃star 和 issues. https://github.com/midou-tech/articles ...

  2. iNeuOS工业互联平台,.NETCore开发的视频服务组件iNeuVideo,RTSP转WebSocket

    目       录 1.      概述... 2 2.      将来集成到iNeuOS平台演示... 3 3.      iNeuVideo结构... 3 4.      iNeuVideo部署及 ...

  3. .Net Core中使用ExceptionFilter

    .Net Core中有各种Filter,分别是AuthorizationFilter.ResourceFilter.ExceptionFilter.ActionFilter.ResultFilter. ...

  4. unittest实战(二):用例编写

    # coding:utf-8import unittestfrom selenium import webdriverimport timefrom ddt import ddt, data, unp ...

  5. 一起了解 .Net Foundation 项目 No.11

    .Net 基金会中包含有很多优秀的项目,今天就和笔者一起了解一下其中的一些优秀作品吧. 中文介绍 中文介绍内容翻译自英文介绍,主要采用意译.如与原文存在出入,请以原文为准. Microsoft Web ...

  6. 实用的Python(3)超简单!基于Python搭建个人“云盘”

    1 简介 当我们想要从本地向云服务器上传文件时,比较常用的有pscp等工具,但避免不了每次上传都要写若干重复的代码,而笔者最近发现的一个基于Python的工具updog,可以帮助我们在服务器上搭建类似 ...

  7. Java设计模式二

    今天谈的是工厂模式,该模式用于封装和对对象的创建,万物皆对象,那么万物又是产品类,如一个水果厂生产三种水果罐头,我们就可以将这三种水果作为产品类,再定义一个接口用来设定对水果罐头的生成方法,在工厂类中 ...

  8. Spring Boot从入门到精通(七)集成Redis实现Session共享

    单点登录(SSO)是指在多个应用系统中,登录用户只需要登录验证一次就可以访问所有相互信任的应用系统,Redis Session共享是实现单点登录的一种方式.本文是通过Spring Boot框架集成Re ...

  9. JavaScript面向对象class

    JavaScript面向对象class 本周逆战班学习的主题是“面向对象”,很多人觉得面向对象很难理解,但其实我们早就在面向对象的思想之中了,今天就让我们再重新认识一下他,主要介绍一下ES6中新增的c ...

  10. 单页面和多页面的网页差别比较(SPA)

      单页面应用(singlePAge Web Application) 多页面应用MultiPage Applicaton,MPA) 组成 一个外壳页面和多个页面片段组成 多个完整的页面组成 资源公用 ...