尼姆博弈就是sg函数的简单体现

学习粗:https://blog.csdn.net/luomingjun12315/article/details/45555495

//f[N]:可改变当前状态的方式,N为方式的种类,f[N]要在getSG之前先预处理
//SG[]:0~n的SG函数值
//S[]:为x后继状态的集合
int f[N],SG[MAXN],S[MAXN];
void getSG(int n){
int i,j;
memset(SG,0,sizeof(SG));
//因为SG[0]始终等于0,所以i从1开始
for(i = 1; i <= n; i++){
//每一次都要将上一状态 的 后继集合 重置
memset(S,0,sizeof(S));
for(j = 0; f[j] <= i && j <= N; j++)
S[SG[i-f[j]]] = 1; //将后继状态的SG函数值进行标记
for(j = 0;; j++) if(!S[j]){ //查询当前后继状态SG值中最小的非零值
SG[i] = j;
break;
}
} }

 题:http://acm.hdu.edu.cn/showproblem.php?pid=1536

 分析,对石子堆打表出sg函数

 异或和要求只能去的数

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=;
int s[],sg[N+],f[];
void getsg(int n){
sg[]=;
for(int i=;i<N;i++){
memset(s,,sizeof(s));
for(int j=;f[j]<=i&&j<=n;j++){
s[sg[i-f[j]]]=;
}
for(int j=;j<N;j++){
if(!s[j]){
sg[i]=j;
break;
}
}
}
}
int main(){
int k;
while(scanf("%d",&k)!=EOF){
if(k==)
break;
for(int i=;i<=k;i++)
scanf("%d",&f[i]);
sort(f+,f++k);
getsg(k);
int t;
scanf("%d",&t);
while(t--){
int n;
scanf("%d",&n);
int ans=;
for(int x,i=;i<=n;i++){
scanf("%d",&x);
ans^=sg[x];
}
if(ans)
printf("W");
else
printf("L"); } printf("\n");
}
return ;
}

题:http://acm.hdu.edu.cn/showproblem.php?pid=5724

由状压得来的sg函数。

题意:n*20的棋盘,给你n行,每行m个,每位选手把棋子移到右边第一个空的位置,移不动则输,问先手是否必赢

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pb push_back
const int M=1e3+;
int sg[<<];
int sta[];
void init(){ for(int i=;i<(<<);i++){
memset(sta,,sizeof(sta));
for(int j=;j>=;j--)
if(i&(<<j)){
for(int k=j-;k>=;k--){
if(!(i&(<<k))){
sta[sg[i^(<<k)^(<<j)]]=;
break;
}
}
} for(int j=;j<=;j++)
if(sta[j]==){
sg[i]=j;
break;
}
}
}
int main(){
init();
int t;
scanf("%d",&t);
while(t--){
int n;
int ans=;
scanf("%d",&n);
for(int i=;i<=n;i++){
int m;
int sign=;
scanf("%d",&m);
while(m--){
int x;
scanf("%d",&x);
sign|=<<(-x);
}
ans^=sg[sign]; }
if(ans)
puts("YES");
else
puts("NO");
}
return ;
}

SG函数学习的更多相关文章

  1. SG函数学习总结

    有点散乱, 将就着看吧. 首先是博弈论的基础, 即 N 和 P 两种状态: N 为必胜状态, P 为必败状态. 对于N, P两种状态, 则有 1. 没有任何合法操作的状态, P; 2. 可以移动到P局 ...

  2. SG 函数学习

    \(Mex\) 运算 \(mex(S)\) 为不属于集合 \(S\) 的最小非负整数,即: \[mex(S)=\min \limits_{x \in \mathbb{N},x \not\in S} \ ...

  3. 学习笔记--博弈组合-SG函数

    fye学姐的测试唯一的水题.... SG函数是一种游戏图每个节点的评估函数 具体定义为: mex(minimal excludant)是定义在整数集合上的操作.它的自变量是任意整数集合,函数值是不属于 ...

  4. HDU 1536 sg函数

    S-Nim Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  5. hdu-------(1848)Fibonacci again and again(sg函数版的尼姆博弈)

    Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  6. 【转】博弈问题及SG函数(真的很经典)

    博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...

  7. (转)博弈问题与SG函数

    博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...

  8. 博弈论进阶之SG函数

    SG函数 个人理解:SG函数是人们在研究博弈论的道路上迈出的重要一步,它把许多杂乱无章的博弈游戏通过某种规则结合在了一起,使得一类普遍的博弈问题得到了解决. 从SG函数开始,我们不再是单纯的同过找规律 ...

  9. 博弈论初步(SG函数)

    讲解见此博客https://blog.csdn.net/strangedbly/article/details/51137432 理解Nim博弈,基于Nim博弈理解SG函数的含义和作用. 学习求解SG ...

随机推荐

  1. SQL字符替换函数translater, replace

    translate() 函数原型是:translate(string, from, to) SELECT TRANSLATE('12345', '134', 'ax') 得到:a2x5 这个函数会把f ...

  2. CodeForces - 748B Santa Claus and Keyboard Check

    题意:给定两个字符串a和b,问有多少种不同的字母组合对,使得将这些字母对替换字符串b后,可以变成字符串a.注意字母对彼此各不相同. 分析:vis[u]记录与u可形成关系的字母,若u与v不同,则形成字母 ...

  3. kube-apiserver常用配置项

    KUBE_API_ADDRESS="--insecure-bind-address=0.0.0.0"                                        ...

  4. Maven:Failed to read artifact descriptor for xxx

    Maven多模块项目jar包引用问题: Failed to execute goal on project xxx-service: Could not resolve dependencies fo ...

  5. Unity获取游戏对象详解

    我觉得Unity里面的Transform 和 GameObject就像两个双胞胎兄弟一样,这俩哥们很要好,我能直接找到你,你也能直接找到我.我看很多人喜欢在类里面去保存GameObject对象.解决G ...

  6. 数的划分(DFS、DP)

    https://www.luogu.com.cn/problem/P1025 题目描述 将整数n分成k份,且每份不能为空,任意两个方案不相同(不考虑顺序). 例如:n=7,k=3,下面三种分法被认为是 ...

  7. python语法基础-并发编程-进程-进程理论和进程的开启

    ############################################## """ 并发编程的相关概念: 进程 1,运行中的程序,就是进程,程序是没有生 ...

  8. dp高难本攻略

    903. DI 序列的有效排列 public int numPermsDISequence(String S) { int n=S.length(); int [][]dp=new int [n+1] ...

  9. Vue.js——3.增删改查

    vue  写假后台  bootstrap 做的样式 代码 <!DOCTYPE html> <html lang="en"> <head> < ...

  10. win10编译tensorflow C++接口

    ​原文地址:https://www.bearoom.xyz/2018/08/28/win10-build-tf-cc/ 首先,我觉得这是一个比较DT的活,因为,tensorflow支持最好的编程语言应 ...