CUDA Pro Tip: Write Flexible Kernels with Grid-Stride Loops
https://devblogs.nvidia.com/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
One of the most common tasks in CUDA programming is to parallelize a loop using a kernel. As an example, let’s use our old friend SAXPY. Here’s the basic sequential implementation, which uses a for loop. To efficiently parallelize this, we need to launch enough threads to fully utilize the GPU.
CUDA编程最常见的任务之一就是用一个kernel来并行化一个循环。比如,对于我们老朋友SAXPY,下面是一个基础的使用循环的实现。为了效率地并行化它,我们需要运行大量的线程来充分利用GPU。
void saxpy(int n, float a, float *x, float *y)
{
for (int i = ; i < n; ++i)
y[i] = a * x[i] + y[i];
}
Common CUDA guidance is to launch one thread per data element, which means to parallelize the above SAXPY loop we write a kernel that assumes we have enough threads to more than cover the array size.
通常CUDA指引会为每一个数据元素运行一个线程,意味着要并行化上述的SAXPY循环,我们需要假设我们写的kernel要有足够的线程以满足数组的大小。
__global__
void saxpy(int n, float a, float *x, float *y)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];
}
I’ll refer to this style of kernel as a monolithic kernel, because it assumes a single large grid of threads to process the entire array in one pass. You might use the following code to launch the saxpy kernel to process one million elements.
我称这类kernel为monolithic kernel,因为它假设存在单个大的线程网格在一次同时处理,运行整个数组运算。你需要用下面的代码来运行一个具有百万元素的saxpy kernel
// Perform SAXPY on 1M elements
saxpy<<<,>>>(<<, 2.0, x, y);
Instead of completely eliminating the loop when parallelizing the computation, I recommend to use a grid-stride loop, as in the following kernel.
相比在并行化计算时完全消去循环,我更推荐使用一种grid-stride loop,如下
__global__
void saxpy(int n, float a, float *x, float *y)
{
for (int i = blockIdx.x * blockDim.x + threadIdx.x;
i < n;
i += blockDim.x * gridDim.x)
{
y[i] = a * x[i] + y[i];
}
}
Rather than assume that the thread grid is large enough to cover the entire data array, this kernel loops over the data array one grid-size at a time.
比起假设线程网格足够大得覆盖整个数组,这个kernel运行一次,就对数组进行一个grid-size的循环。
Notice that the stride of the loop is blockDim.x * gridDim.x which is the total number of threads in the grid. So if there are 1280 threads in the grid, thread 0 will compute elements 0, 1280, 2560, etc. This is why I call this a grid-stride loop. By using a loop with stride equal to the grid size, we ensure that all addressing within warps is unit-stride, so we get maximum memory coalescing, just as in the monolithic version.
注意到这个循环的跨度是 blockDim.x * gridDim.x,它是一个线程网格中所有线程的数量。如果该线程网格中有1280个线程,那么编号为0的线程将执行元素0,1280,2560……这就是为什么我称之为“grid-stride loop”。使用一个跨度等于网格大小的循环,我们可以保证了所有地址都是unit-stride的,于是我们比起monolithic的版本减少了最大的内存消耗。
When launched with a grid large enough to cover all iterations of the loop, the grid-stride loop should have essentially the same instruction cost as the ifstatement in the monolithic kernel, because the loop increment will only be evaluated when the loop condition evaluates to true.
grid-stride循环比起monolithic kernel,也会需要相同的计算消耗在if语句上,因为循环的条件为真时循环才会继续进行(在这里隐式地产生了if的消耗)。
There are several benefits to using a grid-stride loop.
1.Scalability and thread reuse. By using a loop, you can support any problem size even if it exceeds the largest grid size your CUDA device supports. Moreover, you can limit the number of blocks you use to tune performance. For example, it’s often useful to launch a number of blocks that is a multiple of the number of multiprocessors on the device, to balance utilization. As an example, we might launch the loop version of the kernel like this.
1.稳定性及线程复用。当使用一个循环,你可以支持任何显存大小的运算甚至包括它超出了CUDA设备(一次性)支持的最大值。除此之外,你可以限制线程块数量来调整运行效率。比如,为平衡资源使用,载入一定数量的具有不同multiprocessors的线程块,是非常有用的。
int numSMs;
cudaDeviceGetAttribute(&numSMs, cudaDevAttrMultiProcessorCount, devId);
// Perform SAXPY on 1M elements
saxpy<<<*numSMs, >>>( << , 2.0, x, y);
CUDA Pro Tip: Write Flexible Kernels with Grid-Stride Loops的更多相关文章
- CUDA Pro Tip: Optimized Filtering with Warp-Aggregated Atomics
In this post, I’ll introduce warp-aggregated atomics, a useful technique to improve performance when ...
- CUDA Pro:通过向量化内存访问提高性能
CUDA Pro:通过向量化内存访问提高性能 许多CUDA内核受带宽限制,而新硬件中触发器与带宽的比率不断提高,导致带宽受限制的内核更多.这使得采取措施减轻代码中的带宽瓶颈非常重要.本文将展示如何在C ...
- cuda编程-卷积优化
CUDA Convolution https://www.evl.uic.edu/sjames/cs525/final.html Improve Image Processing Using GPU ...
- CUDA 8混合精度编程
CUDA 8混合精度编程 Mixed-Precision Programming with CUDA 8 论文地址:https://devblogs.nvidia.com/mixed-precisio ...
- Ext.js中的tip事件实际使用
Ext.onReady(function () { // Init the singleton. Any tag-based quick tips will start working. Ext.ti ...
- CUDA学习笔记(二)——CUDA线程模型
转自:http://blog.sina.com.cn/s/blog_48b9e1f90100fm5b.html 一个grid中的所有线程执行相同的内核函数,通过坐标进行区分.这些线程有两级的坐标,bl ...
- ExtJs 4: How To Add Grid Cell Tooltip
最近忙一个项目的时候需要实现鼠标移到grid的某一行上提示消息.花了半天时间才解决.在网上找很久终于有找到一个有用的.我的版本是extjs4. 效果如图 Ext.onReady(function () ...
- CUDA性能优化----warp深度解析
本文转自:http://blog.163.com/wujiaxing009@126/blog/static/71988399201701224540201/ 1.引言 CUDA性能优化----sp, ...
- Linux下Qt+CUDA调试并运行
Qt与CUDA相结合具体的操作主要修改qt项目中的配置文件pro.下面以测试的项目为例. 因为这是一个测试案例,代码很简单,下面将这几个文件的代码贴出来,方面后面对应pro文件和Makefile文件中 ...
随机推荐
- Linux和git使用
一.Linux cd . .. - ~ ls -a h l 通配符 mkdir bouch nano vim cat clear cp -r ./db/ ./lib/ mv -r rm -r wh ...
- 关于php自学
自己本人现在正在自学php有一段时间了,不知道现在的学习状态咋样,在我看来应该属于不算很糟糕,但有点糟糕的状态. 如果算学习自学php的话,现在断断续续应该是有5个月了,按理说是差不多可以做出独立项目 ...
- 使用wget获取其他服务器上的文件
http://www.cnblogs.com/tankblog/p/6081521.html
- (二)Java数组的使用
Java数组 无序数组插入删除查询操作: public class ArrayList { private static int[] intArray; private int nElems; pub ...
- 将js进行到底:node学习3
node重要API之NET--TCP编程之旅 废话:最近去了一趟上海会了会一个程序员朋友,途径SNH48握手会,说好我就去看看,没想到握手了王诗蒙,掉入巨坑:塞纳河.回来后边听着<春夏秋冬> ...
- SpringMVC之reset风格和form表单格式的curd
CRUD c:create创建 r:retieve:查询 u:update:修改 d:delete:删除 rest /emp/1 get 代表查询id为1的员工 /emp/1 put 代表修改id为1 ...
- python os.path 模块常用方法
代码: import os apath = os.path.abspath(__file__) # 绝对路径 dirname = os.path.dirname(apath) basename = o ...
- 爬虫cookies详解
cookies简介 cookie是什么? Cookie,有时也用其复数形式 Cookies,指某些网站为了辨别用户身份.进行 session 跟踪而储存在用户本地终端上的数据(通常经过加密).定义于 ...
- 8.【Spring Cloud Alibaba】配置管理-Nacos
使用Nacos管理配置 架构图 配置文件遵循的格式 bootstrap.yml pom.xml <dependency> <groupId>org.springframewor ...
- 没有图片的freemarker下载,备份
没有图片的freemarker下载,备份 //以下代码也可以使用/* public String exportApproveCase(@PathVariable("proId") ...