1059. Prime Factors

Given any positive integer N, you are supposed to find all of its prime factors, and write them in the format N = p1^k1 * p2^k2 *…*pm^km.

Input Specification:

Each input file contains one test case which gives a positive integer N in the range of long int.

Output Specification:

Factor N in the format N = p1^k1 * p2^k2 *…*pm^km,
where pi's are prime factors of N in increasing order, and the exponent ki is the number of pi -- hence when there is only one pi,
ki is 1 and must NOT be printed out.

Sample Input:

97532468

Sample Output:

97532468=2^2*11*17*101*1291

题目大意:给一个整数,将其分解成素数因子,并按要求输出。

主要思想:思路是很直接的,先写一个判断是否为素数的方法,获取输入后判断:如果该数为1,则结果也为1,结束;若该数本身就为素数,则同样无需分解直接输出(这一步很重要,不然如果是个很大的素数就肯定超时了,因为这样从2至这个大数之间的每一个数都需要判断是否为素数,耗时很大)。

接下来,在循环中判断当前素数是否为该数因子,如果是因子,则用数num除以因子将其分解,并按要求输出。注意,在每次成功分解后都需要判断此时的数是否为素数,如果是则直接结束(理由和上面相同,如果给出的数是一个小质数与一个很大的质数相乘,仍会陷入超时的危机);如果该素数不是因子,则找到下一个素数,重复上述操作。直到被分解剩余的部分已经小于当前素数的时候,循环结束。

#include <iostream>
#include <math.h>
using namespace std;
bool is_prime(int x); int main(void) {
int num;
int i = 2;
bool first = true; cin >> num;
cout << num << "=";
if (num == 1) { //输入为1时,输出 1=1
cout << 1 << endl;
return 0;
}
if (is_prime(num)) { //输入素数时,直接输出无需分解
cout << num << endl;
return 0;
}
while (num >= i) {
int count = 0;
while (num % i == 0) {
num /= i; //num值越来越小
count++; //当前质数因子的数量
}
if (count > 0) {
if (!first) cout << "*"; //第一次输出不需要*号
if (count == 1)
cout << i;
else
cout << i << "^" << count;
first = false;
//在每次分解后都需要判断此时的数是否为质数,如果是则直接结束
if (is_prime(num)) {
cout << "*" << num << endl;
return 0;
}
}
else {
while (!is_prime(++i)) //寻找下一个素数因子
continue;
}
}
cout << endl; return 0;
} bool is_prime(int x) {
if (x < 2) return false;
for (int i = 2; i <= sqrt(x); i++) {
if (x % i == 0)
return false;
}
return true;
}

PAT-1059 Prime Factors (素数因子)的更多相关文章

  1. PAT 1059 Prime Factors[难]

    1059 Prime Factors (25 分) Given any positive integer N, you are supposed to find all of its prime fa ...

  2. PAT 1059. Prime Factors (25) 质因子分解

    题目链接 http://www.patest.cn/contests/pat-a-practise/1059 Given any positive integer N, you are suppose ...

  3. PAT 1059. Prime Factors

    反正知道了就是知道,不知道也想不到,很快 #include <cstdio> #include <cstdlib> #include <vector> using ...

  4. PAT 甲级 1059 Prime Factors (25 分) ((新学)快速质因数分解,注意1=1)

    1059 Prime Factors (25 分)   Given any positive integer N, you are supposed to find all of its prime ...

  5. 1059 Prime Factors (25分)

    1059 Prime Factors (25分) 1. 题目 2. 思路 先求解出int范围内的所有素数,把输入x分别对素数表中素数取余,判断是否为0,如果为0继续除该素数知道余数不是0,遍历到sqr ...

  6. PAT Advanced 1059 Prime Factors (25) [素数表的建⽴]

    题目 Given any positive integer N, you are supposed to find all of its prime factors, and write them i ...

  7. PAT 甲级 1059 Prime Factors

    https://pintia.cn/problem-sets/994805342720868352/problems/994805415005503488 Given any positive int ...

  8. 1059. Prime Factors (25)

    时间限制 50 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 HE, Qinming Given any positive integer N, y ...

  9. 1059 Prime Factors(25 分)

    Given any positive integer N, you are supposed to find all of its prime factors, and write them in t ...

  10. PAT甲题题解-1059. Prime Factors (25)-素数筛选法

    用素数筛选法即可. 范围long int,其实大小范围和int一样,一开始以为是指long long,想这就麻烦了该怎么弄. 而现在其实就是int的范围,那难度档次就不一样了,瞬间变成水题一枚,因为i ...

随机推荐

  1. Spring Boot JPA 中transaction的使用

    文章目录 @Transactional的实现 @Transactional的使用 Transaction的传播级别 REQUIRED SUPPORTS MANDATORY NEVER NOT_SUPP ...

  2. office 365 激活

    将以下代码复制到记事本 @echo off title Activate Microsoft Office ALL versions &echo - Microsoft Office Prof ...

  3. var、let、const

    var.let.const之间的区别和使用 1.var声明变量可以重复声明,而let不可以重复声明 let a = 1; let a = 2; var b = 3; var b = 4; a // I ...

  4. 【JAVA基础】03 Java语言基础

    前言:流程控制语句 什么是流程控制语句 流程控制语句:可以控制程序的执行流程. 流程控制语句的分类 顺序结构 选择结构 循环结构 执行流程: 从上往下,依次执行. 案例演示 输出几句话看效果即可 cl ...

  5. 通过fiddler抓取IDEA的请求

    2019独角兽企业重金招聘Python工程师标准>>> 因为fiddler默认是代理的8888端口,所以设置一下IDEA的请求使用本地的8888作为代理发出. 1."EDI ...

  6. CF思维联系–CodeForces - 225C. Barcode(二路动态规划)

    ACM思维题训练集合 Desciption You've got an n × m pixel picture. Each pixel can be white or black. Your task ...

  7. 状态压缩DP(大佬写的很好,转来看)

    奉上大佬博客 https://blog.csdn.net/accry/article/details/6607703 动态规划本来就很抽象,状态的设定和状态的转移都不好把握,而状态压缩的动态规划解决的 ...

  8. Codeforces 1291 Round #616 (Div. 2) C. Mind Control(超级详细)

    C. Mind Control You and your n−1 friends have found an array of integers a1,a2,-,an. You have decide ...

  9. CodeForces - 1245 B - Restricted RPS(贪心)

    Codeforces Round #597 (Div. 2) Let nn be a positive integer. Let a,b,ca,b,c be nonnegative integers ...

  10. 在Windows中快速配置vim

    vim原本是在Linux中的编辑器,如果使用熟练写代码速度可以远高于其它编辑器 当然很多OI比赛也会要求在Linux中进行 然而: 想学Linux,首先要有一个Linux,但有了Linux,这个直播间 ...