08 DTFT变换的性质
DTFT变换的性质
线性性质
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
\]
则
\[
\begin{aligned}ax[n]+by[n]&\xrightarrow{DTFT}\sum_{n=-\infty}^{\infty}(ax[n]+by[n])e^{-jwn} \\
&=a\sum_{n=-\infty}^{\infty}x[n]e^{-jwn}+b\sum_{n=-\infty}^{\infty}y[n]e^{-jwn}\\
&=aX(e^{jw})+bY(e^{jw})
\end{aligned}
\]
时移性质
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]
则\(x[n-n_0]\)的傅里叶变换为
\[
\sum_{n=-\infty}^{\infty}x[n-n_0]e^{-jwn}\xrightarrow{m=n-n_0}\sum_{m=-\infty}^{\infty}x[m]e^{-jwm}e^{-jwn_0}=e^{-jwn_0}X(e^{jw})
\]
频移性质
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]
则\(e^{jw_0n}x[n]\)的傅里叶变换为
\[
\sum_{n=-\infty}^{\infty}e^{jw_0n}x[n]e^{-jwn}=\sum_{n=-\infty}^{\infty}x[n]e^{-j(w-w_0)n}=X(e^{j(w-w_0)})
\]
时域反转
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]
则\(x[-n]\)的傅里叶变换为
\[
\sum_{n=-\infty}^{\infty}x[-n]e^{-jwn}\xrightarrow{m=-n}\sum_{m=-\infty}^{\infty}x[m]e^{-(-jw)m}=X(e^{-jw})
\]
时域微分
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]
由于
\[
x[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})e^{jwn}dw
\]
两边同时对\(n\)进行微分运算
\[
\frac{dx[n]}{dn}=\frac{1}{2\pi}\int_{-\pi}^{\pi}jwX(e^{jw})e^{jwn}dw
\]
所以
\[
\frac{dx[n]}{dn}\xrightarrow{DTFT}jwX(e^{jw})
\]
频域微分
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]
由
\[
X(e^{jw})=\sum_{n=-\infty}^{\infty}x[n]e^{-jwn}
\]
两边同时对\(w\)进行微分
\[
\frac{dX(e^{jw})}{dw}=\sum_{n=-\infty}^{\infty}-jnx[n]e^{-jwn}
\]
\[
\Rightarrow \sum_{n=-\infty}^{\infty}nx[n]e^{-jwn}= j\frac{dX(e^{jw})}{dw}
\]
所以
\[
nx[n]\xrightarrow{DTFT}j\frac{dX(e^{jw})}{dw}
\]
卷积性质
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
\]
则二者卷积的\(DTFT\)为
\[
\begin{aligned}
\sum_{n=-\infty}^{\infty}(x[n]*y[n])e^{-jwn}&=\sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}x[m]y[n-m]e^{-jwn} \\
&=\sum_{m=-\infty}^{\infty}x[m]\sum_{n=-\infty}^{\infty}y[n-m]e^{-jwn} \\
&\xrightarrow{k=n-m}\sum_{m=-\infty}^{\infty}x[m]e^{-jwm}\sum_{k=-\infty}^{\infty}y[k]e^{-jwk} \\
&=X(e^{jw})Y(e^{jw})
\end{aligned}
\]
调制定理
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
\]
则\(x[n]y[n]\)的\(DTFT\)为
\[
\begin{aligned}
\sum_{n=-\infty}^{\infty}(x[n]y[n])e^{-jwn} &=\sum_{n=-\infty}^{\infty}x[n]\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{j\theta})e^{j\theta n}d\theta e^{-jwn} \\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sum_{n=-\infty}^{\infty}x[n]^{-j(w-\theta)n}Y(e^{j\theta})d\theta \\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{j\theta})X(e^{j(w-\theta)})d\theta
\end{aligned}
\]
Parseval定理
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
\]
则
\[
\begin{aligned}
\sum_{n=-\infty}^{\infty}x[n]y^{*}[n]&=\sum_{n=-\infty}^{\infty}x[n](\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{jw})e^{jwn}dw)^{*} \\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}x[n]e^{-jwn}Y^{*}(e^{jw})dw \\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})Y^{*}(e^{jw})dw
\end{aligned}
\]
得到Parseval
定理
\[
\sum_{n=-\infty}^{\infty}x[n]y^{*}[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})Y^{*}(e^{jw})dw
\]
如果\(y[n]=x[n]\),那么
\[
\sum_{n=-\infty}^{\infty}\vert x[n] \vert^2=\frac{1}{2\pi}\int_{-\pi}^{\pi}\vert X(e^{jw})\vert^2dw
\]
即序列\(x[n]\)的能量,可以通过对\(\vert X(e^{jw})\vert^2\)的积分求得,所以称\(\vert X(e^{jw})\vert^2\)为序列\(x[n]\)的能量谱密度。
08 DTFT变换的性质的更多相关文章
- 13 DFT变换的性质
DFT变换的性质 线性性质 \[ \begin{aligned} y[n]&=ax[n]+bw[n]\xrightarrow{DFT}Y[k]=\sum_{n=0}^{N-1}(ax[n]+ ...
- 常用函数的DTFT变换对和z变换对
直接从书上抓图的,为以后查表方便 1.DTFT 2.z变换对
- z变换的性质
z变换的许多重要性质在数字信号处理中常常要用到. 序列 z变换 收敛域 1)x(n) X(z) Rx-< |z| <Rx+ 2)y(n) Y(z) Ry-< |z| <Ry+ ...
- 转载:一幅图弄清DFT与DTFT,DFS的关系
转载:http://www.cnblogs.com/BitArt/archive/2012/11/24/2786390.html 很多同学学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DF ...
- FS,FT,DFS,DTFT,DFT,FFT的联系和区别
DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统 ...
- FS,FT,DFT,DFS和DTFT的关系
对于初学数字信号(Digital Signal Processing,DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. FS:时域上任意连续的周期信号可以分 ...
- FS,FT,DFS,DTFT,DFT,FFT的联系和区别 数字信号处理
DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统 ...
- 16 Z变换
Z变换 由于\(DTFT\)变换是有收敛条件的,并且其收敛条件比较严格,很多信号不能够满足条件,为了有效的分析信号,需要放宽收敛的条件,引入\(Z\)变换. 定义 已知序列的\(DTFT\)为 \[ ...
- 07 DTFT
DTFT 连续时间傅里叶变换(CTFT) 连续时间傅里叶变换的定义为: \[ X(j\Omega)=\int_{-\infty}^{\infty}x_a(t)e^{-j\Omega t}dt \] 其 ...
随机推荐
- 数学算法(一):快速求斐波那契数第n项通过黄金分割率公式
有一个固定的数学公式= =,不知道的话显然没法应用 首先黄金分割率接近于这个公式, (以下为黄金分割率与斐波那契的关系,可跳过) 通过斐波那契数列公式 两边同时除以 得: (1) 注意后一项比前一项接 ...
- 创建Vue项目及其内容分析
利用 vue 脚手架开发企业级应用 # 全局安装 vue-cli npm install --global vue-cli # 创建一个基于 webpack 模板的新项目 ...
- Go_channel
通道可以被认为是Goroutines通信的管道.类似于管道中的水从一端到另一端的流动,数据可以从一端发送到另一端,通过通道接收. 在前面讲Go语言的并发时候,我们就说过,当多个Goroutine想实现 ...
- jmeter-BeanShell PreProcessor的使用
BeanShell简介 BeanShell是一个小型嵌入式Java源代码解释器,具有对象脚本语言特性,能够动态地执行标准JAVA语法.在BeanShell中,我们可以使用java语言自定义函数来处理特 ...
- 私域流量&公域流量
所谓私域流量,指的是个人拥有完全的支配权的账号所沉淀的粉丝.客户.流量,可以直接触达的,多次利用的流量.比如说QQ号.微信号.社群上的粉丝或者顾客,就属于是私域流量. 而与之相对的,就是所谓的公域流量 ...
- C++:打开一个文件夹下一系列的文件
可以用MFC的CFileFind类: FILE *pFile=NULL; CFileFind cff; CString fstr="C:\\page\\*.*"//所以用文件和文件 ...
- 2020 i春秋新春战疫公益赛 misc
0x01 code_in_morse morse decode后得到: RFIE4RYNBINAUAAAAAGUSSCEKIAAAAEUAAAAA7AIAYAAAAEPFOMTWAAABANUSRCB ...
- The Preliminary Contest for ICPC Asia Shenyang 2019 C Dawn-K's water (完全背包)
完全背包为什么要取到M,可以取到2*M嘛,这题需要整取,对于不能整取的背包容量,dp[k]=INF,以及dp[j-water[i].weight]=INF时,dp[j]也不需要更新.如果不整取的话,后 ...
- 消息队列(五)--- RocketMQ-消息存储4
问题 index 文件有什么作用,结构又是如何 概述 index 文件主要是为了 message key 服务的,rocketmq 发送消息的时候可以带上 key , messge key 是为了标识 ...
- Tomcat部署Web项目的3种方式
一.将war包丢进webapps 这是最简单粗暴的方式:将web工程打成war,丢进tomcat/webapps目录即可,tomcat会自动解压.无需修改任何配置文件即可完成部署. 这里我准备了tom ...