08 DTFT变换的性质
DTFT变换的性质
线性性质
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
\]
则
\[
\begin{aligned}ax[n]+by[n]&\xrightarrow{DTFT}\sum_{n=-\infty}^{\infty}(ax[n]+by[n])e^{-jwn} \\
&=a\sum_{n=-\infty}^{\infty}x[n]e^{-jwn}+b\sum_{n=-\infty}^{\infty}y[n]e^{-jwn}\\
&=aX(e^{jw})+bY(e^{jw})
\end{aligned}
\]
时移性质
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]
则\(x[n-n_0]\)的傅里叶变换为
\[
\sum_{n=-\infty}^{\infty}x[n-n_0]e^{-jwn}\xrightarrow{m=n-n_0}\sum_{m=-\infty}^{\infty}x[m]e^{-jwm}e^{-jwn_0}=e^{-jwn_0}X(e^{jw})
\]
频移性质
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]
则\(e^{jw_0n}x[n]\)的傅里叶变换为
\[
\sum_{n=-\infty}^{\infty}e^{jw_0n}x[n]e^{-jwn}=\sum_{n=-\infty}^{\infty}x[n]e^{-j(w-w_0)n}=X(e^{j(w-w_0)})
\]
时域反转
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]
则\(x[-n]\)的傅里叶变换为
\[
\sum_{n=-\infty}^{\infty}x[-n]e^{-jwn}\xrightarrow{m=-n}\sum_{m=-\infty}^{\infty}x[m]e^{-(-jw)m}=X(e^{-jw})
\]
时域微分
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]
由于
\[
x[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})e^{jwn}dw
\]
两边同时对\(n\)进行微分运算
\[
\frac{dx[n]}{dn}=\frac{1}{2\pi}\int_{-\pi}^{\pi}jwX(e^{jw})e^{jwn}dw
\]
所以
\[
\frac{dx[n]}{dn}\xrightarrow{DTFT}jwX(e^{jw})
\]
频域微分
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]
由
\[
X(e^{jw})=\sum_{n=-\infty}^{\infty}x[n]e^{-jwn}
\]
两边同时对\(w\)进行微分
\[
\frac{dX(e^{jw})}{dw}=\sum_{n=-\infty}^{\infty}-jnx[n]e^{-jwn}
\]
\[
\Rightarrow \sum_{n=-\infty}^{\infty}nx[n]e^{-jwn}= j\frac{dX(e^{jw})}{dw}
\]
所以
\[
nx[n]\xrightarrow{DTFT}j\frac{dX(e^{jw})}{dw}
\]
卷积性质
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
\]
则二者卷积的\(DTFT\)为
\[
\begin{aligned}
\sum_{n=-\infty}^{\infty}(x[n]*y[n])e^{-jwn}&=\sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}x[m]y[n-m]e^{-jwn} \\
&=\sum_{m=-\infty}^{\infty}x[m]\sum_{n=-\infty}^{\infty}y[n-m]e^{-jwn} \\
&\xrightarrow{k=n-m}\sum_{m=-\infty}^{\infty}x[m]e^{-jwm}\sum_{k=-\infty}^{\infty}y[k]e^{-jwk} \\
&=X(e^{jw})Y(e^{jw})
\end{aligned}
\]
调制定理
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
\]
则\(x[n]y[n]\)的\(DTFT\)为
\[
\begin{aligned}
\sum_{n=-\infty}^{\infty}(x[n]y[n])e^{-jwn} &=\sum_{n=-\infty}^{\infty}x[n]\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{j\theta})e^{j\theta n}d\theta e^{-jwn} \\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sum_{n=-\infty}^{\infty}x[n]^{-j(w-\theta)n}Y(e^{j\theta})d\theta \\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{j\theta})X(e^{j(w-\theta)})d\theta
\end{aligned}
\]
Parseval定理
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
\]
则
\[
\begin{aligned}
\sum_{n=-\infty}^{\infty}x[n]y^{*}[n]&=\sum_{n=-\infty}^{\infty}x[n](\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{jw})e^{jwn}dw)^{*} \\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}x[n]e^{-jwn}Y^{*}(e^{jw})dw \\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})Y^{*}(e^{jw})dw
\end{aligned}
\]
得到Parseval定理
\[
\sum_{n=-\infty}^{\infty}x[n]y^{*}[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})Y^{*}(e^{jw})dw
\]
如果\(y[n]=x[n]\),那么
\[
\sum_{n=-\infty}^{\infty}\vert x[n] \vert^2=\frac{1}{2\pi}\int_{-\pi}^{\pi}\vert X(e^{jw})\vert^2dw
\]
即序列\(x[n]\)的能量,可以通过对\(\vert X(e^{jw})\vert^2\)的积分求得,所以称\(\vert X(e^{jw})\vert^2\)为序列\(x[n]\)的能量谱密度。
08 DTFT变换的性质的更多相关文章
- 13 DFT变换的性质
DFT变换的性质 线性性质 \[ \begin{aligned} y[n]&=ax[n]+bw[n]\xrightarrow{DFT}Y[k]=\sum_{n=0}^{N-1}(ax[n]+ ...
- 常用函数的DTFT变换对和z变换对
直接从书上抓图的,为以后查表方便 1.DTFT 2.z变换对
- z变换的性质
z变换的许多重要性质在数字信号处理中常常要用到. 序列 z变换 收敛域 1)x(n) X(z) Rx-< |z| <Rx+ 2)y(n) Y(z) Ry-< |z| <Ry+ ...
- 转载:一幅图弄清DFT与DTFT,DFS的关系
转载:http://www.cnblogs.com/BitArt/archive/2012/11/24/2786390.html 很多同学学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DF ...
- FS,FT,DFS,DTFT,DFT,FFT的联系和区别
DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统 ...
- FS,FT,DFT,DFS和DTFT的关系
对于初学数字信号(Digital Signal Processing,DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. FS:时域上任意连续的周期信号可以分 ...
- FS,FT,DFS,DTFT,DFT,FFT的联系和区别 数字信号处理
DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统 ...
- 16 Z变换
Z变换 由于\(DTFT\)变换是有收敛条件的,并且其收敛条件比较严格,很多信号不能够满足条件,为了有效的分析信号,需要放宽收敛的条件,引入\(Z\)变换. 定义 已知序列的\(DTFT\)为 \[ ...
- 07 DTFT
DTFT 连续时间傅里叶变换(CTFT) 连续时间傅里叶变换的定义为: \[ X(j\Omega)=\int_{-\infty}^{\infty}x_a(t)e^{-j\Omega t}dt \] 其 ...
随机推荐
- UNICODE编码UTF-16 中的Endian(FE FF) 和 Little Endian(FF FE)
从网上找到的两篇不错的文章,由于被网上多处转载,所以不知道源处,未能注明出处,希望作者见谅,如有意见请发信给我,谢谢! 第一篇很清晰. 介绍Unicode之前,首先要讲解一些基础知识.虽然跟Unico ...
- 计算几何-HPI
This article is made by Jason-Cow.Welcome to reprint.But please post the article's address. 在线笛卡尔坐 ...
- buuctf 二维码
首先下载文件 然后用解压工具解压之后 发现是一个二维码 扫描二维码 并没有拿到 flag 然后将图片拖进 hxd中搜索PK发现有一个压缩包 将压缩包提取出来 暴力破解 然后得到密码 然后解压 然后得 ...
- 数学算法(一):快速求斐波那契数第n项通过黄金分割率公式
有一个固定的数学公式= =,不知道的话显然没法应用 首先黄金分割率接近于这个公式, (以下为黄金分割率与斐波那契的关系,可跳过) 通过斐波那契数列公式 两边同时除以 得: (1) 注意后一项比前一项接 ...
- Java进阶学习(6)之抽象与接口
抽象与接口 抽象 抽象函数 表达概念而无法实现具体代码的函数 抽象类 表达概念而无法构造出实体的类 有抽象函数的类也可以有非抽象函数 实现抽象函数 继承自抽象类的子类必须覆盖父类中的抽象函数 抽象 与 ...
- 深入delphi编程理解之消息(二)发送消息函数及消息编号、消息结构体的理解
一.delphi发送消息的函数主要有以下三个: (一).SendMessage函数,其原型如下: function SendMessage( hWnd: HWND; {目标句柄} Msg: UINT; ...
- JAVA基础学习(3)之循环
3循环 3.1循环 3.1.1循环 一直要做的行为进行循环 3.1.2数数字 while(){}判断是否进行 数数字:number/10 //数数字Scanner in = new Scanner(S ...
- oracle关于sequence的个人理解
oracle关于sequence的个人理解 1. sequence在多用户使用时的同步问题 个人感觉sequence是以连接(会话)为基础,类似于java中使用mysql的一个connection 网 ...
- 用数组实现 最简 hash线性探测
package arr; import java.util.Random; /** 模拟线性寻址式hash函数 模拟将1000大小包含50个数字的数组,存入大小为100的数组内(为了方便判断,我们将0 ...
- 计算机二级-C语言-程序修改题-190114记录-对整型变量进行取余操作可以取得各个位上的值。
//给定程序中fun函数的功能是:从低位开始取出长整形变量s中奇数位上的数,依次构成一个新的数放在t中.高位仍在高位,低位仍在低位.例如:当s中的数为7654321时,t中的数为7531. //重难点 ...