08 DTFT变换的性质
DTFT变换的性质
线性性质
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
\]
则
\[
\begin{aligned}ax[n]+by[n]&\xrightarrow{DTFT}\sum_{n=-\infty}^{\infty}(ax[n]+by[n])e^{-jwn} \\
&=a\sum_{n=-\infty}^{\infty}x[n]e^{-jwn}+b\sum_{n=-\infty}^{\infty}y[n]e^{-jwn}\\
&=aX(e^{jw})+bY(e^{jw})
\end{aligned}
\]
时移性质
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]
则\(x[n-n_0]\)的傅里叶变换为
\[
\sum_{n=-\infty}^{\infty}x[n-n_0]e^{-jwn}\xrightarrow{m=n-n_0}\sum_{m=-\infty}^{\infty}x[m]e^{-jwm}e^{-jwn_0}=e^{-jwn_0}X(e^{jw})
\]
频移性质
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]
则\(e^{jw_0n}x[n]\)的傅里叶变换为
\[
\sum_{n=-\infty}^{\infty}e^{jw_0n}x[n]e^{-jwn}=\sum_{n=-\infty}^{\infty}x[n]e^{-j(w-w_0)n}=X(e^{j(w-w_0)})
\]
时域反转
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]
则\(x[-n]\)的傅里叶变换为
\[
\sum_{n=-\infty}^{\infty}x[-n]e^{-jwn}\xrightarrow{m=-n}\sum_{m=-\infty}^{\infty}x[m]e^{-(-jw)m}=X(e^{-jw})
\]
时域微分
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]
由于
\[
x[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})e^{jwn}dw
\]
两边同时对\(n\)进行微分运算
\[
\frac{dx[n]}{dn}=\frac{1}{2\pi}\int_{-\pi}^{\pi}jwX(e^{jw})e^{jwn}dw
\]
所以
\[
\frac{dx[n]}{dn}\xrightarrow{DTFT}jwX(e^{jw})
\]
频域微分
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]
由
\[
X(e^{jw})=\sum_{n=-\infty}^{\infty}x[n]e^{-jwn}
\]
两边同时对\(w\)进行微分
\[
\frac{dX(e^{jw})}{dw}=\sum_{n=-\infty}^{\infty}-jnx[n]e^{-jwn}
\]
\[
\Rightarrow \sum_{n=-\infty}^{\infty}nx[n]e^{-jwn}= j\frac{dX(e^{jw})}{dw}
\]
所以
\[
nx[n]\xrightarrow{DTFT}j\frac{dX(e^{jw})}{dw}
\]
卷积性质
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
\]
则二者卷积的\(DTFT\)为
\[
\begin{aligned}
\sum_{n=-\infty}^{\infty}(x[n]*y[n])e^{-jwn}&=\sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}x[m]y[n-m]e^{-jwn} \\
&=\sum_{m=-\infty}^{\infty}x[m]\sum_{n=-\infty}^{\infty}y[n-m]e^{-jwn} \\
&\xrightarrow{k=n-m}\sum_{m=-\infty}^{\infty}x[m]e^{-jwm}\sum_{k=-\infty}^{\infty}y[k]e^{-jwk} \\
&=X(e^{jw})Y(e^{jw})
\end{aligned}
\]
调制定理
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
\]
则\(x[n]y[n]\)的\(DTFT\)为
\[
\begin{aligned}
\sum_{n=-\infty}^{\infty}(x[n]y[n])e^{-jwn} &=\sum_{n=-\infty}^{\infty}x[n]\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{j\theta})e^{j\theta n}d\theta e^{-jwn} \\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sum_{n=-\infty}^{\infty}x[n]^{-j(w-\theta)n}Y(e^{j\theta})d\theta \\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{j\theta})X(e^{j(w-\theta)})d\theta
\end{aligned}
\]
Parseval定理
设
\[
x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
\]
则
\[
\begin{aligned}
\sum_{n=-\infty}^{\infty}x[n]y^{*}[n]&=\sum_{n=-\infty}^{\infty}x[n](\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{jw})e^{jwn}dw)^{*} \\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}x[n]e^{-jwn}Y^{*}(e^{jw})dw \\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})Y^{*}(e^{jw})dw
\end{aligned}
\]
得到Parseval
定理
\[
\sum_{n=-\infty}^{\infty}x[n]y^{*}[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})Y^{*}(e^{jw})dw
\]
如果\(y[n]=x[n]\),那么
\[
\sum_{n=-\infty}^{\infty}\vert x[n] \vert^2=\frac{1}{2\pi}\int_{-\pi}^{\pi}\vert X(e^{jw})\vert^2dw
\]
即序列\(x[n]\)的能量,可以通过对\(\vert X(e^{jw})\vert^2\)的积分求得,所以称\(\vert X(e^{jw})\vert^2\)为序列\(x[n]\)的能量谱密度。
08 DTFT变换的性质的更多相关文章
- 13 DFT变换的性质
DFT变换的性质 线性性质 \[ \begin{aligned} y[n]&=ax[n]+bw[n]\xrightarrow{DFT}Y[k]=\sum_{n=0}^{N-1}(ax[n]+ ...
- 常用函数的DTFT变换对和z变换对
直接从书上抓图的,为以后查表方便 1.DTFT 2.z变换对
- z变换的性质
z变换的许多重要性质在数字信号处理中常常要用到. 序列 z变换 收敛域 1)x(n) X(z) Rx-< |z| <Rx+ 2)y(n) Y(z) Ry-< |z| <Ry+ ...
- 转载:一幅图弄清DFT与DTFT,DFS的关系
转载:http://www.cnblogs.com/BitArt/archive/2012/11/24/2786390.html 很多同学学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DF ...
- FS,FT,DFS,DTFT,DFT,FFT的联系和区别
DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统 ...
- FS,FT,DFT,DFS和DTFT的关系
对于初学数字信号(Digital Signal Processing,DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. FS:时域上任意连续的周期信号可以分 ...
- FS,FT,DFS,DTFT,DFT,FFT的联系和区别 数字信号处理
DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统 ...
- 16 Z变换
Z变换 由于\(DTFT\)变换是有收敛条件的,并且其收敛条件比较严格,很多信号不能够满足条件,为了有效的分析信号,需要放宽收敛的条件,引入\(Z\)变换. 定义 已知序列的\(DTFT\)为 \[ ...
- 07 DTFT
DTFT 连续时间傅里叶变换(CTFT) 连续时间傅里叶变换的定义为: \[ X(j\Omega)=\int_{-\infty}^{\infty}x_a(t)e^{-j\Omega t}dt \] 其 ...
随机推荐
- bugku 社工进阶
首先看到的是 由于之前知道有bugku的百度吧 并且这个是一个社工题所以可以试一下这个百度吧 进入百度吧然后会见到 这句话的意思是要我们登录这个账号 但是我们只有账号没有密码 如果爆破的话很有可 ...
- linux中history加入显示时间命令代码
source 空格 配置文件,则配置立即生效,这里的soruce也可以用英文状态下的点即“.”代替 历史命令history -w将现在的命令记录写入到history里面 如果在history里面加上时 ...
- MySQL数据完整性
数据完整性 一个数据库就是一个完整的业务单元,可以包含多张表,数据被存储在表中 在表中为了更加准确的存储数据,保证数据的正确有效,可以在创建表的时候,为表添加一些强制性的验证,包括数据字段的类型.约束 ...
- C语言实例-大小写字母间的转换
初学C语言都会遇到要求写大小写转换的题目 这类题目主要通过ASCII(美国信息交换标准代码)码差值实现,A对应ASCII码十进制数字是65,a对应ASCII码十进制数字是97,即大小写字母之间ASCI ...
- GIT-maven
maven 一:什么是maven 1.maven是基于项目对象模型(POM),可以通过一小段描述信息来管理项目的创建,报告和文档的软件项目管理工具. 2.maven是跨平台的项目管理工具,主要服务于 ...
- Python短文本自动识别个体是否有自杀倾向【新手必学】
我们以微博树洞为例,讲解了怎么自动爬取单个微博的评论.今天我们就要用上这些数据做一个自杀倾向分类器,这样的分类器如果应用得当,将可以帮助成千上万误入歧途的人们挽回生命. 为了简化问题,我们将短文本分为 ...
- java中怎么表现一对多
链接:https://www.cnblogs.com/w-xibao/p/8183680.html 链接2:https://blog.csdn.net/C_time/article/details/8 ...
- VM虚拟机黑屏 鼠标进不去
#开始 可能是我脸黑吧 最近用虚拟机好几次都是黑屏 鼠标进不去 但是任务管理器显示确实有资源消耗 也就是说实际上应该是开机成功了(但是听不到声音 也许是没有开机吧) #解决方案 管理员权限打开 cmd ...
- js的split() 方法和join()方法
定义和用法 split() 方法用于把一个字符串分割成字符串数组. String.split() 执行的操作与 Array.join 执行的操作是相反的. join() 方法用于把数组中的所有元素放入 ...
- 【PAT甲级】1087 All Roads Lead to Rome (30 分)(dijkstra+dfs或dijkstra+记录路径)
题意: 输入两个正整数N和K(2<=N<=200),代表城市的数量和道路的数量.接着输入起点城市的名称(所有城市的名字均用三个大写字母表示),接着输入N-1行每行包括一个城市的名字和到达该 ...