「CF197B Limit」
题目撞名
题目大意:
给出两个函数 \(P(x),Q(x)\).
\(P(x)=a_0 \times x^N+a_1 \times x^{N-1}+a_2 \times x^{N-2} \cdots a_{N-1} \times x+a_N\)
\(Q(x)=b_0 \times x^M+b_1 \times x^{M-1}+b_2 \times x^{M-2} \cdots b_{M-1} \times x+b_M\)
计算 \(\lim_{x \to +\infty}\frac{P(x)}{Q(x)}\)
分析
先看一下极限的定义:设函数 \(f(x)\) 在点 \(x_0\) 的某一去心邻域内有定义,如果存在常数 \(a\),\(\forall \varepsilon \in \mathbb{N}\),\(\exists \delta>0\),使不等式\(|f(x)-a|<\varepsilon\),在 \(|x-x_0|\in(0,\delta)\) 时恒成立,那么常数 \(a\) 就叫做函数 \(f(x)\) 当 \(x \to x_0\) 时的极限,记作 \(\lim_{x \to x_0}f(x)=a\).(根本就不是人话)
定义非常简(kan)单(bu)明(dong)了,于是肯定会有人会用一种非常简单粗暴的方法去解决这道题,将一个非常大的数带入,然后计算,答案取一个近似值,那么问题来了,需要带怎样的一个数进去呢,又如何计算呢.所以这个方法显然就是错误的,那么就要从这两个函数入手了,可以发现 \(\lim_{x \to +\infty}\frac{P(x)}{a_0 \times x^N}=1\) 具体证明见洛必达法则,所以当 \(x \to +\infty\) 时,\(P(x)=a_0 \times x^N\),\(Q(x)=b_0 \times x^M\),所以就直接取比较这两个值就好了.当 \(N>M\)时结果为 \(+\infty\) 或 \(-\infty\),结果与 \(a_0\) 和 \(b_0\) 的正负性有关,如果 \(a_0*b_0>0\) 结果为 \(+\infty\),反之为 \(-\infty\).如果 \(N<M\) 时结果为 \(0\),当 \(N=M\) 时结果自然就是 \(\frac{a_0}{b_0}\) 了.
代码
#include<bits/stdc++.h>
#define REP(i,first,last) for(int i=first;i<=last;++i)
#define DOW(i,first,last) for(int i=first;i>=last;--i)
using namespace std;
int N,M;
int a0,b0;//只要记录a0和b0
int Gcd(int a,int b)//需要约分
{
if(!b)
{
return a;
}
return Gcd(b,a%b);
}
int main()
{
scanf("%d%d",&N,&M);
int air;//没用的值
scanf("%d",&a0);
REP(i,1,N)
{
scanf("%d",&air);
}
scanf("%d",&b0);
REP(i,1,M)
{
scanf("%d",&air);
}
if(N<M)//如果N<M时最后的答案为0
{
printf("0/1");
return 0;
}
if(a0*b0<0)//如果a0*b0<时需要输出符号
{
printf("-");
a0=abs(a0);
b0=abs(b0);
}
if(N>M)//如果N>M时最终的结果为无穷大
{
printf("Infinity");
return 0;
}
int gcd=Gcd(a0,b0);//约分
a0/=gcd;
b0/=gcd;
printf("%d/%d",a0,b0);//输出答案
return 0;
}
「CF197B Limit」的更多相关文章
- loj#2020 「AHOI / HNOI2017」礼物 ntt
loj#2020 「AHOI / HNOI2017」礼物 链接 bzoj没\(letex\),差评 loj luogu 思路 最小化\(\sum\limits_1^n(a_i-b_i)^2\) 设改变 ...
- loj2058 「TJOI / HEOI2016」求和 NTT
loj2058 「TJOI / HEOI2016」求和 NTT 链接 loj 思路 \[S(i,j)=\frac{1}{j!}\sum\limits_{k=0}^{j}(-1)^{k}C_{j}^{k ...
- 「AHOI / HNOI2017」礼物
「AHOI / HNOI2017」礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰 ...
- 前端构建工具之gulp(一)「图片压缩」
前端构建工具之gulp(一)「图片压缩」 已经很久没有写过博客了,现下终于事情少了,开始写博吧 今天网站要做一些优化:图片压缩,资源合并等 以前一直使用百度的FIS工具,但是FIS还没有提供图片压缩的 ...
- fir.im Weekly - 如何打造 Github 「爆款」开源项目
最近 Android 转用 Swift 的传闻甚嚣尘上,Swift 的 Github 主页上已经有了一次 merge>>「Port to Android」,让我们对 Swift 的想象又多 ...
- 更新日志 - fir.im「高级统计」功能上线
距离 2016 年到来只剩 10 个日夜,fir.im 也准备了一些新鲜的东西,比如「高级统计」功能和「跳转应用商店」功能,帮助你更好地管理.优化应用,欢迎大家试用反馈:) 新增高级统计功能 这次更新 ...
- Notepad++ 开启「切分窗口」同时检视、比对两份文件
Notepad++ 是个相当好用的免费纯文本编辑器,除了内建的功能相当多之外,也支持外挂模块的方式扩充各方面的应用.以前我都用 UltraEdit 跟 Emeditor,后来都改用免费的 Notepa ...
- 「zigbee - 1」工欲善其事必先利其器 - IAR for 8051 IDE customization
最近在实验室做一些 Zigbee 相关的事情,然而一直没在博客上记录啥东西,也不像原来在公司有动力在 Confluence wiki 上扯东扯西.直到前些阵子,跑到 feibit 论坛上(国内较大的一 ...
- 「C语言」文件的概念与简单数据流的读写函数
写完「C语言」单链表/双向链表的建立/遍历/插入/删除 后,如何将内存中的链表信息及时的保存到文件中,又能够及时的从文件中读取出来进行处理,便需要用到”文件“的相关知识点进行文件的输入.输出. 其实, ...
随机推荐
- c#中的栈(stack)与队列(queue)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- 编译和链接(lib和dll区别)(转载)
1.头文件并不参加链接和编译.编译器第一步要做的就是简单的把头文件在包含它的源文件中展开.不知你是否能理解这句话.也就是头文件里面有什么内容,通通把它移到包含这个头文件的源文件里.(我觉得这是个很重要 ...
- 吴裕雄 python 机器学习——超大规模数据集降维IncrementalPCA模型
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 【C语言】scanf()输入浮点型数据
#include<stdio.h> int main() { double x1, x2, x3, x4; printf("输入2个浮点数x1,x2:\n"); sca ...
- jquery 获取 父级 iframe 里的控件对象
window.parent.document.getElementsByTagName('iframe')[0].contentWindow.document.getElementById('id')
- Python格式化字符串知多少
字符串格式化相当于字符串模板.也就是说,如果一个字符串有一部分是固定的,而另一部分是动态变化的,那么就可以将固定的部分做成模板,然后那些动态变化的部分使用字符串格式化操作符(%) 替换.如一句问候语: ...
- eclipse 切换主题Theme
eclipse切换主题theme 1. 打开help -> eclipse marketplace,搜索theme 2. 点击右侧安装后一直继续,直到安装完成 3. 安装完成后会重启eclips ...
- 如何在centos里面安装php-posix
今天在虚拟机上安装一个系统的插件,出现了You must have POSIX and PCNTL functions to use Video Process,搜了一下缺少插件,那接下来就是安装了. ...
- JQuery checkbox多选框组选中提交,当选择某(无)一项,其他项禁止选中
在项目中难免会遇到一些表单的提交,尤其是多选框中,当用户选择了某一项时,禁止其他项的选择.所以为了避免这样的冲突,所以我们前端就得控制一下了,下面就来个简单demo,记录一下,有需要的伙伴可以拿去耍耍 ...
- [JavaScript] 两个数相除有余数时结果加1
实现代码 ; ; ?(total/item):(Math.floor(total/item)+); console.log(page)