tensorflow之tf.slice()
转载:https://www.jianshu.com/p/71e6ef6c121b
https://www.cnblogs.com/chamie/p/11073363.html
def slice(input_, begin, size, name=None):
其中“input_”是你输入的tensor,就是被切的那个。
“begin”是每一个维度的起始位置,这个下面详细说。
“size”相当于问每个维度拿几个元素出来。
下面看例1:
t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]])
tf.slice(t, [1, 0, 0], [1, 1, 3])
这个输出是:
[[[3, 3, 3]]]
首先作为一个3维数组t,你要先明白他的shape是[3,2,3].
Shape:
这个shape是怎么来的呢?咱们把这个t分解一下看就好理解了。那一大堆有括号的t,只看它最外面的括号的话,可以看成是:
t = [A, B, C] #这是第一维度
然后每一个里面有两个东西,可以写成:
A = [i, j], B = [k, l], C = [m, n] #这是第二维度
最后,这i, j, k, l, m, n里面分别是:
i = [1, 1, 1], j = [2, 2, 2], k = [3, 3 ,3], l = [4, 4, 4], m = [5, 5, 5], n = [6, 6, 6] # 这是第三维度
所以shape就是中括号 [ ] 的层级里单位的数量。
对于t来说,最外面括号里有3个东西,分别是A, B, C。这三个东西每个里面有两个玩意儿, i和j, k和l, m和n。
他们里面每一个又有3个数字。所以t的shape是[3,2,3]。这是我的理解方式。
Slice:
在解释slice之前,有一点要知道的是python的数组index是从0开始的。
有了这个基础,我们再来看例子:
tf.slice(t, [1, 0, 0], [1, 1, 3]) # begin = [1, 0, 0]
这里根据顺序我们知道,begin是[1, 0, 0], size是[1, 1, 3]. 他们两个数组的意义是从左至右,每一个数字代表一个维度。上面说了begin的意思是起始位置,那么[1, 0, 0]的意思是在3个维度中,每个维度从哪里算起。
第一维度是[A, B, C]。 begin里[1, 0, 0]是1,也就是从B算起。其次第二维度里B = [k, l](注意啊,我这里只写了B = [k, l],可不代表只有B有用,如果size里第一个数字是2的话,B和C都会被取的),begin里第二个数是0,也就是从k算起。第三维度k = [3, 3 ,3],begin里第三个数是0,就是从第一个3算起。
到现在都能看懂吧?知道了这三个起始点之后,再来看size。
size的意思是每个维度的大小,也就是每个维度取几个元素。size的应该是最后输出的tensor的shape。
例子里面:
tf.slice(t, [1, 0, 0], [1, 1, 3]) # size = [1, 1, 3]
size里第一个是1,意思是在第一个维度取1个元素。t = [A, B, C] begin是起算是B,取一个那就是B了呗。那么第一维度结果就是[B]
size第二个也是1,第二维度B = [k, l], begin里起算是k,取一个是k。那么第二维度结果是[[k]]。
size第三个是3,第三维度k = [3, 3 ,3],begin里起算是第一个3。三个3取3个数,那就要把三个3都取了,所以是
[[[3, 3, 3]]]
例2:
t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]])
tf.slice(t, [1, 0, 0], [1, 2, 3])
看懂了第一个,再看第二个就简单了。这里begin还是一样[1, 0 ,0]。 size第一个维度取一个,还是[B]。然后这里不是1了,是2,意思是取两个。还记得B = [k, l]吗?现在不是只要k了,是k和l都要。第三维度取3个,也就是说不光是k = [3, 3 ,3],l = [4, 4, 4]也要slice走。
总结一下,第一维度取[B]。第二维度里把B换成[k, l],就变成了[[k, l]]. 第三维度里把k换成[3, 3 ,3],把l 换成 [4, 4, 4],替换后是最终结果
[[[3, 3, 3], [4, 4, 4]]]
是不是觉得看懂了也挺简单的,只是可能不太习惯这种思维方式。
例3:
t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]])
tf.slice(t, [1, 0, 0], [-1, -1, -1])
对于这种情况,源代码注释中有一句话:
If `size[i]` is -1, all remaining elements in dimension i are included in the slice. In other words, this is equivalent to setting: `size[i] = input.dim_size(i) - begin[i]`
也就是说,如果size输入值是-1的话,在那个维度剩下的数都会slice走。上面的例子中,begin是[1, 0, 0]。三个维度都是-1的话,那么结果: 第一维度是[B,C];第二维度是[[k, l], [m, n]]; 第三维度是[[[3,3,3], [4,4,4]], [[5,5,5], [6,6,6]]]
tensorflow之tf.slice()的更多相关文章
- Tensorflow API 学习(1)-tf.slice()
slice()函数原型为: tf.slice(input_, begin, size, name=None) 函数有4个参数: 1,input_ :图片的矩阵输入格式. 2,begin :开始截取的位 ...
- 深度学习实践-物体检测-faster-RCNN(原理和部分代码说明) 1.tf.image.resize_and_crop(根据比例取出特征层,进行维度变化) 2.tf.slice(数据切片) 3.x.argsort()(对数据进行排列,返回索引值) 4.np.empty(生成空矩阵) 5.np.meshgrid(生成二维数据) 6.np.where(符合条件的索引) 7.tf.gather取值
1. tf.image.resize_and_crop(net, bbox, 256, [14, 14], name) # 根据bbox的y1,x1,y2,x2获得net中的位置,将其转换为14*1 ...
- 11 tensorflow在tf.while_loop循环(非一般循环)中使用操纵变量该怎么做
代码(操纵全局变量) xiaojie=1 i=tf.constant(0,dtype=tf.int32) batch_len=tf.constant(10,dtype=tf.int32) loop_c ...
- tf.slice函数解析
tf.slice函数解析 觉得有用的话,欢迎一起讨论相互学习~Follow Me tf.slice(input_, begin, size, name = None) 解释 : 这个函数的作用是从输入 ...
- tf.slice()函数详解(极详细)
目录 1.官方注释 2.参数解释 3.例子 参考 @(tf.slice()函数详解 ) tf.slice()是TensorFlow库中分割张量的一个函数,其定义为def slice(input_, b ...
- 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法
在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化 ...
- 【TensorFlow】tf.nn.max_pool实现池化操作
max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似 有些地方可以从卷积去参考[TensorFlow]tf.nn.conv2d是怎样实现卷积的? tf.nn.max_pool(va ...
- TensorFlow:tf.nn.max_pool实现池化操作
tf.nn.max_pool(value, ksize, strides, padding, name=None) 参数是四个,和卷积很类似: 第一个参数value:需要池化的输入,一般池化层接在卷积 ...
- tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数(转)
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...
随机推荐
- JAVA学习之枚举
1.新建一个枚举类 public enum Apple{ FUJI, PIPPIN, GRANNY_SMITH } 通过查看字节码,可以看到,枚举类的实现方式: 1)继承自java.lang.Enum ...
- Python 之 格式化文件
# 结构化文件存储- xml, json- 为了解决不同设备之间的信息交换 ## XML文件(可扩展标记语言) - 标记语言:语言中使用尖括号括起来的文本字符串标记 - 可扩展:用户可以自己定义需要的 ...
- PHP面向对象(一)
1 面向对象介绍 1.1 介绍 面向对象是一个编思想. 编程思想有面向过程和面向对象. 面向过程: 编程思路集中的是过程上 面向对象: 编程思路集中在参与的对象 1.2 好处 多人合作方便 ...
- ActiveMQ 整合 spring
一.添加 jar 包 <dependency> <groupId>org.apache.activemq</groupId> <artifactId>a ...
- easyui获取当前点击对象tabs的title和Index
观察上面打开的tabs选项卡,肯定会有一个目前是被选中状态,而这个状态的class属性也肯定是和其他tabs不一样的,有个class等于tabs-selected的 var title = $('.t ...
- nodejs-app.js
设置静态目录 1 2 app.use(express.static(path.join(__dirname, 'public'))); //设置模版渲染的js,css,images的静态文件目录 设置 ...
- HDU 4228
很明显可以转化为反素数的题目.由于有n种不同的方式,所以,数的约数可以为2*n或者2*n-1 #include <iostream> #include <cstdio> #in ...
- 串口通讯 ADC0804 数码管
#include<reg52.h> #include<stdio.h> #include<intrins.h> #define uchar unsigned cha ...
- JAVA学习第五十一课 — IO流(五)流的操作基本规律
转换流: InputStreamReader:字节到字符的桥梁.解码 OutputStreamWriter:字符到字节的桥梁.编码 流的基本规律 1.明白源和汇 源:InputStream.Reade ...
- Solr 搜索的过程和所须要的參数
一个典型的搜索处理过程,以及所须要的參数例如以下: qt:指定一个RequestHandler,即/select.缺省是使用DisMax RequestHandler defType:选择一个quer ...