时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 黄金 Gold
 查看运行结果
 
 
题目描述 Description

集合论与图论对于小松来说是比数字逻辑轻松,比数据结构难的一门专业必修课。虽然小松在高中的时候已经自学过了离散数学中的图论,组合,群论等知识。但对于集合论,小松还是比较陌生的。集合论的好多东西也涉及到了图论的知识。

在第四讲的学习中,小松学到了“有序对”这么一个概念,即用<x, y>表示有序对x和y。要注意的是有序对<x, y>不等于有序对<y, x>。对于一个有序对集合R={<x,y>, <y, z>, <x,  z>,……},我们说R是传递的,当且仅当他满足下面的性质:

红色字体用直观的语言描述是:如果存在<x, y>∈R,<y, z>∈R,那么一定存在<x, z>∈R

 

这里集合R可以对应到一个有向图G,有序对<x ,y>对应到了G中的一条有向边。 你现在的任务是,对于任意给定的一个简单有向图G(同一有向边不出现两次),判断G是否具有传递性。

输入描述 Input Description

输入文件set.in第一行包含测试数据的个数T(1<=T<=10)。接下来T组测试数据,每组测试数据第一行包含两个个整数n和m(1<=n<=1000, n<=m<=100000),表示G中元素个数和有向边的个数,接下来的m行每行2个整数x, y(1<=x,y<=n)表示x与y之间有一条有向边连接。

输出描述 Output Description

对于每组数据,如果G是传递的,你需要向输出文件set.out输出一行”Yes”, 否则输出一行”No”。

样例输入 Sample Input

2

3 3

1 2

1 3

2 3

4 5

1 2

1 3

1 4

2 3

3 4

样例输出 Sample Output

Yes

No

数据范围及提示 Data Size & Hint

有30%满足1<=n<=100, 1<=m<=10000;

有100%的数据满足1<=n<=1000, 1<=m<=100000;

思路:暴力

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int t,n,m,a,b;
bool trans=true;
bool graph[][];
int main(){
scanf("%d",&t);
while(t--){
trans=true;
scanf("%d%d",&n,&m);
memset(graph,,sizeof(graph));
for(int i=;i<m;i++){
scanf("%d%d",&a,&b);
graph[a][b]=true;
}
for(int x=;x<=n;x++)
for(int y=;y<=n;y++)
if(graph[x][y]&&x!=y)
for(int z=;z<=n;z++)
if(graph[y][z])
if(!graph[x][z]){
trans=false;
break;
}
if(trans) printf("Yes\n");
else printf("No\n");
}
}

codevs 1019 集合论与图论的更多相关文章

  1. codevs——1019 集合论与图论

    1019 集合论与图论  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 集合论与图论对于小松来说 ...

  2. 【BZOJ-2732】集合选数 状压DP (思路题)

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Statu ...

  3. bzoj2734 集合选数

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

  4. 2734: [HNOI2012]集合选数 - BZOJ

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

  5. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  6. bzoj2734: [HNOI2012]集合选数

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

  7. 【BZOJ2734】【HNOI2012】集合选数(状态压缩,动态规划)

    [BZOJ2734][HNOI2012]集合选数(状态压缩,动态规划) 题面 Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所 ...

  8. [HNOI2012]集合选数

    题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...

  9. bzoj 2734: [HNOI2012]集合选数

    题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...

随机推荐

  1. django 笔记8 url模板 自定义函数 simple_tag

    感谢alex老师~ 知识点: URL - 两个没见 url>路由系统> 函数或类 > 返回字符串 Form表单提交: 提交 >url>函数或类中的方法 -.. HttpR ...

  2. POJ 3187 全排列+杨辉三角(组合数)

    思路: next_permutation()加个递推组合数随便搞搞就A了- //By SiriusRen #include <cstdio> #include <algorithm& ...

  3. input元素和display:inline-block的元素不在一行的解决办法

    每次用到了<input/> 元素 和inline-block的<span></span>(不一定是span,其他一些inline的元素也是一样)元素,他们总是会不在 ...

  4. 请问Typecho Mysql 数据库和Sqlite数据库我该如何选择。

    纠结如我,又纠结了,请大家帮忙看一下我该如何选择.就一个没有文章的博客.一直用VPS太浪费,现在换成了虚拟主机.但是虚拟主机的MYSQL数据库限制连接数30个,我不懂这是个什么概念,但是我觉得30太少 ...

  5. SVN: repository browser 库浏览器

    SVN: repository browser  库浏览器 -----如果不想全部下载,可以通过repository browser  库浏览器 从库中选择要下载的文件夹内容下载(svn针对性下载)

  6. T_SQL 日期函数

    日期函数基数表达式的日期和时间或者是从时间间隔中返回值. GETDATE(),返回当前系统的日期和时间.例: SELECT GETDATE();  结果为:2010-05-18 15:53:08.92 ...

  7. 洛谷1034 NOIP2002 矩形覆盖

    问题描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7). 这些点可以 ...

  8. 参考《深度学习之PyTorch实战计算机视觉》PDF

    计算机视觉.自然语言处理和语音识别是目前深度学习领域很热门的三大应用方向. 计算机视觉学习,推荐阅读<深度学习之PyTorch实战计算机视觉>.学到人工智能的基础概念及Python 编程技 ...

  9. Struts2 全局结果集

    1.index,jsp <body> Result类型 <ol> <li><a href="user/user?type=1">返回 ...

  10. .Net商品管理(注释,百度,提问,对比,总结)

    管理控制器 using System; using System.Collections.Generic; using System.Linq; using System.Web; using Sys ...