luogu1967 货车运输 最大瓶颈生成树
题目大意
给出一张图,给出q对点,求这两个点间权值最小边最大的路径,输出这个最小边权。
题解
我们先一条一条边建图。当建立的边使得图中形成环时,因为环中的每个节点只考虑是否连通和瓶颈大小,要想互相连通只要一条路就够了,而只有环上的最小边和次小边可能是这条路的瓶颈,且这条路的瓶颈肯定越大越好。故根据贪心,我们可以直接把环中的权值最小边删去。
所以我们就维护一个LCT来随时删边增边,还要用到拆边等方法来统计路径上的值吗?能AC,但太复杂了!
我们从整体考虑,第一段叙述中,每次遇到一个环,其值为S。由于去掉的是最小边,边权w,所以剩余的路径上的边权和S-w是最大的。所以这就是一个最大生成树。所以我们就用Kruskal算法求出最大生成树,再由树上倍增求解即可。注意Kruskal处理的是单向边而不是无向图,所以先Kruskal,再建图。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdarg>
using namespace std;
const int MAX_NODE = 10010, MAX_EDGE = 50010 * 2, MAX_LOG = 20, INF = 0x3f3f3f3f;
struct Node;
struct Edge;
struct Node {
Edge *Head;
Node *Elder[MAX_LOG];
Node *Root;
int MinVal[MAX_LOG];
int Depth;
Node *Father;
}_nodes[MAX_NODE], *CurRoot;
int _vCount;
struct Edge {
Node *From, *To;
Edge *Next;
int Weight;
Edge(Node *from, Node *to, int w):From(from),To(to),Weight(w),Next(NULL){}
Edge() {}
}_edges[MAX_NODE * 2], tempEdges[MAX_EDGE];
int _eCount, tempeCount;
Edge *NewEdge() {
return _edges + (++_eCount);
}
Edge *AddEdge(Node *from, Node *to, int w) {
Edge *e = NewEdge();
e->To = to;
e->From = from;
e->Weight = w;
e->Next = from->Head;
from->Head = e;
return e;
}
void Build(int uId, int vId, int w) {
tempEdges[++tempeCount] = Edge(_nodes + uId, _nodes + vId, w);
}
int Log2(int x) {
int ans = 0;
while (x >>= 1)
ans++;
return ans;
}
void Dfs(Node *cur, Edge *FromFa) {
cur->Root = CurRoot;
if (FromFa == NULL) {
cur->Depth = 1;
cur->MinVal[0] = INF;
}
else {
cur->Elder[0] = FromFa->From;
cur->Depth = cur->Elder[0]->Depth + 1;
cur->MinVal[0] = FromFa->Weight;
for (int i = 1; cur->Elder[i - 1]->Elder[i - 1]; i++) {
cur->Elder[i] = cur->Elder[i - 1]->Elder[i - 1];
cur->MinVal[i] = min(cur->MinVal[i - 1], cur->Elder[i - 1]->MinVal[i - 1]);
}
}
for (Edge *e = cur->Head; e; e = e->Next)
if (e->To != cur->Elder[0])
Dfs(e->To, e);
}
void DfsStart() {
for (int i = 1; i <= _vCount; i++) {
if (!_nodes[i].Depth) {
CurRoot = _nodes + i;
Dfs(CurRoot, NULL);
}
}
}
int Lca(Node *deep, Node *high) {
if (deep->Root != high->Root)
return -1;
int ans = INF;
if (deep->Depth < high->Depth)
swap(deep, high);
int len = deep->Depth - high->Depth;
for (int k = 0; len; k++) {
if ((1 << k)&len) {
ans = min(ans, deep->MinVal[k]);
deep = deep->Elder[k];
len -= (1 << k);
}
}
if (deep == high)
return ans;
for (int k = Log2(deep->Depth); k >= 0; k--) {
if (deep->Elder[k] != high->Elder[k]) {
ans = min(ans, deep->MinVal[k]);
ans = min(ans, high->MinVal[k]);
deep = deep->Elder[k];
high = high->Elder[k];
}
}
ans = min(ans, deep->MinVal[0]);
ans = min(ans, high->MinVal[0]);
return ans;
}
bool CmpEdge(Edge a, Edge b) {
return a.Weight > b.Weight;
}
Node *FindFather(Node *cur) {
return cur == cur->Father ? cur : cur->Father = FindFather(cur->Father);
}
void Join(Node *root1, Node *root2) {
root1->Father = root2;
}
void Kruskal() {
sort(tempEdges + 1, tempEdges + tempeCount + 1, CmpEdge);
for (int i = 1; i <= _vCount; i++)
_nodes[i].Father = _nodes + i;
for (int i = 1; i <= tempeCount; i++) {
Edge e = tempEdges[i];
Node *root1 = FindFather(e.From), *root2 = FindFather(e.To);
if (root1 != root2) {
AddEdge(e.From, e.To, e.Weight);
AddEdge(e.To, e.From, e.Weight);
Join(root1, root2);
}
}
}
int main() {
int totEdge;
scanf("%d%d", &_vCount, &totEdge);
for (int i = 1; i <= totEdge; i++) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
Build(u, v, w);
}
Kruskal();
DfsStart();
int queryCnt;
scanf("%d", &queryCnt);
while (queryCnt--) {
int u, v;
scanf("%d%d", &u, &v);
printf("%d\n", Lca(_nodes + u, _nodes + v));
}
return 0;
}
luogu1967 货车运输 最大瓶颈生成树的更多相关文章
- NOIP2013 货车运输(最大生成树,倍增)
NOIP2013 货车运输(最大生成树,倍增) A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道 ...
- NOIP2013 货车运输 (最大生成树+树上倍增LCA)
死磕一道题,中间发现倍增还是掌握的不熟 ,而且深刻理解:SB错误毁一生,憋了近2个小时才调对,不过还好一遍AC省了更多的事,不然我一定会疯掉的... 3287 货车运输 2013年NOIP全国联赛提高 ...
- 「NOIP2013」「LuoguP1967」货车运输(最大生成树 倍增 LCA
题目描述 AA国有nn座城市,编号从 11到nn,城市之间有 mm 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 qq 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最 ...
- $Noip2013/Luogu1967$ 货车运输 最大生成树+倍增$lca$
$Luogu$ $Sol$ 首先当然是构建一棵最大生成树,然后对于一辆货车的起点和终点倍增跑$lca$更新答案就好.记得预处理倍增的时候不仅要处理走了$2^i$步后是那个点,还有这中间经过的路径权值的 ...
- [洛谷 P1967] 货车运输 (最大生成树 lca)
题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多 ...
- [NOIP2013/Codevs3287]货车运输-最小[大]生成树-树上倍增
Problem 树上倍增 题目大意 给出一个图,给出若干个点对u,v,求u,v的一条路径,该路径上最小的边权值最大. Solution 看到这个题第一反应是图论.. 然而,任意路径最小的边权值最大,如 ...
- [luogu1967][货车运输]
题目链接 题意: 其实题目的意思就是问从x到y权值最小的路的权值最大能是多少. 思路: 首先可以先把这张图变成一棵树.因为那些更小的点肯定是不跑更优秀,而且题目没有要求路程,所以生成一棵树,只要能保证 ...
- 货车运输(最大生成树+倍增LCA)
看到第一篇题解的神奇码风--我决定发一篇码风正常的题解造福人类 这题的做法也非常经典,最大生成树\(+LCA\),相当于先贪心一下,在LCA的时候记录一下当前最小的边权 顺便吐槽一下最后一个测试点: ...
- Luogu P1967 货车运输 倍增+最大生成树
看见某大佬在做,决定补一发题解$qwq$ 首先跑出最大生成树(注意有可能不连通),然后我们要求的就是树上两点间路径上的最小边权. 我们用倍增的思路跑出来$w[u][j]$,表示$u$与的它$2^j$的 ...
随机推荐
- xhtml1-frameset.dtd
<!-- Extensible HTML version 1.0 Frameset DTD This is the same as HTML 4 Frameset except for chan ...
- 1.java安全框架SHIRO
1. shiro介绍 Apache Shiro是一个强大且易用的java安全框架,执行身份验证.授权.密码和会话管理. 使用Shiro的易于理解的API,您可以快速.轻松地获得任何应用程序,从最小的移 ...
- MySql-Connector for NET 连接驱动选择
尝试在Visual Studio2010, 2012环境下链接Mysql, 为啥不直接在App.config里面写字符串, 当然是可以,但是当你想用EF 的时候,必须要有个数据源, 首先在[服务资源管 ...
- JavaScript Array 整理 - 元素操作
整理一下Array对象中针对元素操作的方法. 分别是: concat (组合数组) join(数组转字符串) pop(删除最后一个元素) shift(删除第一个元素) push(在数组尾部添加新元素) ...
- python--5、模块
模块 程序的代码根据作用分散写入多个文件,这些文件相互引用,以实现程序的功能,这些文件即称之为”模块“.自己定义的函数或者变量为了防止在解释器中执行完退出后丢失,需要把代码写到文件中,再直接执行,称为 ...
- SQL Server存储过程作业(三)
阶段4:练习——插入入住客人记录 需求说明 使用存储过程将入住客人信息插入客人信息表中,要求: 检查身份证号必须是18个字符组成 押金的默认值为1000元 如果客人记录插入成功,输出客人流水号:否则输 ...
- jQuery顺序加载图片(终版)
这一篇是对上一篇(jQuery顺序加载图片(初版)--http://www.cnblogs.com/newbie-cc/p/3707504.html)的改进. function loadImage(i ...
- (转)基于MVC4+EasyUI的Web开发框架经验总结(12)--利用Jquery处理数据交互的几种方式
http://www.cnblogs.com/wuhuacong/p/4085682.html 在基于MVC4+EasyUI的Web开发框架里面,大量采用了Jquery的方法,对数据进行请求或者提交, ...
- C# 写入二进制文件
写入整型25 文件在MiniHex中显示 写入字符串I am happy 0A 6D - 6D - 这一行数据是C#把字符串转换为16进制形式 不知道为啥用MiniHex打开多了个0A 写入空&quo ...
- Linux删除重复内容命令uniq笔记
针对文本文件,有时候我们需要删除其中重复的行.或者统计重复行的总次数,这时候可以采用Linux系统下的uniq命令实现相应的功能. 语法格式:uniq [-ic] 常用参数说明: -i 忽略大小写 - ...