Ternary Tree
前一篇文章介绍了Trie树。它实现简单但空间效率低。假设要支持26个英文字母,每一个节点就要保存26个指针,因为节点数组中保存的空指针占用了太多内存。让我来看看Ternary Tree。
When you have to store a set of strings, what data structure should you use?
You could use hash tables, which sprinkle the strings throughout an array. Access is fast, but information about relative order is lost. Another option is the use of binary search trees, which store strings in order, and are fairly fast. Or you could use digital search tries, which are lightning fast, but use lots of space.
In this article, we’ll examine ternary search trees, which combine the time efficiency of digital tries with the space efficiency of binary search trees. The resulting structure is faster than hashing for many typical search problems, and supports a broader range of useful problems and operations. Ternary searches are faster than hashing and more powerful, too.
三叉搜索树Ternary Tree,结合了字典树的时间效率和二叉搜索树的空间效率长处。
为了避免多余的指针占用内存,每一个Trie节点不再用数组来表示,而是表示成“树中有树”。Trie节点里每一个非空指针都会在三叉搜索树里得到属于它自己的节点。
Each node has 3 children: smaller (left), equal (middle), larger (right).
Follow links corresponding to each character in the key.
・If less, take left link; if greater, take right link.
・If equal, take the middle link and move to the next key character.
Search hit. Node where search ends has a non-null value.
Search miss. Reach a null link or node where search ends has null value.
// C program to demonstrate Ternary Search Tree (TST) insert, travese
// and search operations
#include <stdio.h>
#include <stdlib.h>
#define MAX 50
// A node of ternary search tree
struct Node
{
char data;
// True if this character is last character of one of the words
unsigned isEndOfString: 1;
struct Node *left, *eq, *right;
};
// A utility function to create a new ternary search tree node
struct Node* newNode(char data)
{
struct Node* temp = (struct Node*) malloc(sizeof( struct Node ));
temp->data = data;
temp->isEndOfString = 0;
temp->left = temp->eq = temp->right = NULL;
return temp;
}
// Function to insert a new word in a Ternary Search Tree
void insert(struct Node** root, char *word)
{
// Base Case: Tree is empty
if (!(*root))
*root = newNode(*word);
// If current character of word is smaller than root's character,
// then insert this word in left subtree of root
if ((*word) < (*root)->data)
insert(&( (*root)->left ), word);
// If current character of word is greate than root's character,
// then insert this word in right subtree of root
else if ((*word) > (*root)->data)
insert(&( (*root)->right ), word);
// If current character of word is same as root's character,
else
{
if (*(word+1))
insert(&( (*root)->eq ), word+1);
// the last character of the word
else
(*root)->isEndOfString = 1;
}
}
// A recursive function to traverse Ternary Search Tree
void traverseTSTUtil(struct Node* root, char* buffer, int depth)
{
if (root)
{
// First traverse the left subtree
traverseTSTUtil(root->left, buffer, depth);
// Store the character of this node
buffer[depth] = root->data;
if (root->isEndOfString)
{
buffer[depth+1] = '\0';
printf( "%s\n", buffer);
}
// Traverse the subtree using equal pointer (middle subtree)
traverseTSTUtil(root->eq, buffer, depth + 1);
// Finally Traverse the right subtree
traverseTSTUtil(root->right, buffer, depth);
}
}
// The main function to traverse a Ternary Search Tree.
// It mainly uses traverseTSTUtil()
void traverseTST(struct Node* root)
{
char buffer[MAX];
traverseTSTUtil(root, buffer, 0);
}
// Function to search a given word in TST
int searchTST(struct Node *root, char *word)
{
if (!root)
return 0;
if (*word < (root)->data)
return searchTST(root->left, word);
else if (*word > (root)->data)
return searchTST(root->right, word);
else
{
if (*(word+1) == '\0')
return root->isEndOfString;
return searchTST(root->eq, word+1);
}
}
// Driver program to test above functions
int main()
{
struct Node *root = NULL;
insert(&root, "cat");
insert(&root, "cats");
insert(&root, "up");
insert(&root, "bug");
printf("Following is traversal of ternary search tree\n");
traverseTST(root);
printf("\nFollowing are search results for cats, bu and cat respectively\n");
searchTST(root, "cats")?
printf("Found\n"): printf("Not Found\n");
searchTST(root, "bu")? printf("Found\n"): printf("Not Found\n");
searchTST(root, "cat")? printf("Found\n"): printf("Not Found\n");
return 0;
}
Output:
Following is traversal of ternary search tree
bug
cat
cats
up
Following are search results for cats, bu and cat respectively
Found
Not Found
Found
Time Complexity: The time complexity of the ternary search tree operations is similar to that of binary search tree. i.e. the insertion, deletion and search operations take time proportional to the height of the ternary search tree. The space is proportional to the length of the string to be stored.
Hashing.
・Need to examine entire key.
・Search hits and misses cost about the same.
・Performance relies on hash function.
・Does not support ordered symbol table operations.
TSTs.
・Works only for string (or digital) keys.
・Only examines just enough key characters.
・Search miss may involve only a few characters.
・Supports ordered symbol table operations (plus extras!). Red-black BST.
・Performance guarantee: log N key compares.
・Supports ordered symbol table API.
Hash tables.
・Performance guarantee: constant number of probes.
・Requires good hash function for key type.
Tries. R-way, TST.
・Performance guarantee: log N characters accessed.
・Supports character-based operations.
Ternary Tree的更多相关文章
- 数据结构《17》---- 自动补齐之《二》----Ternary Search Tree
一. 序言 上一篇文章中,给出了 trie 树的一个实现.可以看到,trie 树有一个巨大的弊病,内存占用过大. 本文给出另一种数据结构来解决上述问题---- Ternary Search Tree ...
- Trie和Ternary Search Tree介绍
Trie树 Trie树,又称字典树,单词查找树或者前缀树,是一种用于快速检索的多叉树结构,如英文字母的字典树是一个26叉树,数字的字典树是一个10叉树. Trie树与二叉搜索树不同,键不是直接保存在节 ...
- 数据结构《17》---- 自己主动补齐之《二》----Ternary Search Tree
一. 序言 上一篇文章中,给出了 trie 树的一个实现. 能够看到,trie 树有一个巨大的弊病,内存占用过大. 本文给出还有一种数据结构来解决上述问题---- Ternary Search Tre ...
- IK分词器原理与源码分析
原文:http://3dobe.com/archives/44/ 引言 做搜索技术的不可能不接触分词器.个人认为为什么搜索引擎无法被数据库所替代的原因主要有两点,一个是在数据量比较大的时候,搜索引擎的 ...
- 原创:Solr Wiki 中关于Suggester(搜索推荐)的简单解读
Solr Wiki Suggester Suggester - a flexible "autocomplete" component.(搜索推荐) A common nee ...
- 计算广告(5)----query意图识别
目录: 一.简介: 1.用户意图识别概念 2.用户意图识别难点 3.用户意图识别分类 4.意图识别方法: (1)基于规则 (2)基于穷举 (3)基于分类模型 二.意图识别具体做法: 1.数据集 2.数 ...
- 编解码再进化:Ali266 与下一代视频技术
过去的一年见证了人类百年不遇的大事记,也见证了多种视频应用的厚积薄发.而因此所带来的视频数据量的爆发式增长更加加剧了对高效编解码这样的底层硬核技术的急迫需求. 新视频编解码标准 VVC 定稿不久之后, ...
- Ternary Search Tree 应用--搜索框智能提示
前面介绍了Ternary Search Tree和它的实现,那么可以用Ternary Search Tree来实现搜索框的只能提示,因为Ternary Search Tree的前缀匹配效率是非常高的, ...
- Trie(前缀树)和ternary trie和binary search tree
1 什么是trie trie是一棵多叉树,假如存放的是由26个字母(不区分大小写)构成的字符串的话,那么就是一棵26叉树. trie树是一棵前缀树,因为每个结点只保存字符串中的一个字符,整个字符串保存 ...
随机推荐
- GIL解释锁及进程池和线程池
官方介绍 ''' 定义: In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple nati ...
- 【UVa 12563】Jin Ge Jin Qu hao
[Link]: [Description] KTV给你T秒的唱歌时间; 你有n首一定要唱的歌; 然后有一首很变态的歌有678s,你想在T秒结束之前唱一下这首歌; 因为这样的话,你能尽量晚地走出KTV( ...
- Java基础学习总结(14)——Java对象的序列化和反序列化
一.序列化和反序列化的概念 把对象转换为字节序列的过程称为对象的序列化. 把字节序列恢复为对象的过程称为对象的反序列化. 对象的序列化主要有两种用途: 1) 把对象的字节序列永久地保存到硬盘上,通常存 ...
- Ubuntu 14.04 SNMP安装与配置
http://blog.csdn.net/wang1144/article/details/51177260 http://blog.csdn.net/shanzhizi/article/detail ...
- docker安装cloudera manager,切换cloudera-scm用户报错can not open session
在root帐号下su - cloudera-scm报错can not open session 在网上搜,大概是说ulimit超过限制之类,搞了很久才找到/etc/security/limits.d/ ...
- RenderScript on LLVM笔记
Android 为何引入 Render Script: 3D 可移植 ( 直接用 opengl 也能够移植呀?) 性能 易用性 ( 让 opengl 难入门的人,用 Render Script ?) ...
- vue.2.0-路由
vue2.0 路由: http://router.vuejs.org/zh-cn/index.html 基本使用: 1. 布局 <router-link to="/home" ...
- USACO2002 Open:雄伟的山峦
简要题意: 奶牛们在落基山下避暑,从它们的房子向外望去,可以看到N 座山峰构成的山峦,奶牛发现每座山峰都是等腰三角形,底边长度恰好是高度的两倍.所以山峰的顶点坐标可由两个底部端点求出.设i 座第山峰的 ...
- Vue或React多页应用脚手架
https://github.com/zhujiasheng/vue-multipage https://github.com/MeCKodo/vue-multipage
- win7系统 连接打印机 提示 “正在检查 windows update 需要一段时间”
现象: 在客户端 添加 打印机时,出现 “网络安装打印机 一直在检查 windows update” 提示 处理:等待上述提示结束后,会出现手动添加 提示窗口,在框内选择打印机驱动 .