前一篇文章介绍了Trie树。它实现简单但空间效率低。假设要支持26个英文字母,每一个节点就要保存26个指针,因为节点数组中保存的空指针占用了太多内存。让我来看看Ternary Tree。

  When you have to store a set of strings, what data structure should you use?

You could use hash tables, which sprinkle the strings throughout an array. Access is fast, but information about relative order is lost. Another option is the use of binary search trees, which store strings in order, and are fairly fast. Or you could use digital search tries, which are lightning fast, but use lots of space.

  In this article, we’ll examine ternary search trees, which combine the time efficiency of digital tries with the space efficiency of binary search trees. The resulting structure is faster than hashing for many typical search problems, and supports a broader range of useful problems and operations. Ternary searches are faster than hashing and more powerful, too.

  三叉搜索树Ternary Tree,结合了字典树的时间效率和二叉搜索树的空间效率长处。

为了避免多余的指针占用内存,每一个Trie节点不再用数组来表示,而是表示成“树中有树”。Trie节点里每一个非空指针都会在三叉搜索树里得到属于它自己的节点。

  Each node has 3 children: smaller (left), equal (middle), larger (right).



  Follow links corresponding to each character in the key.

   ・If less, take left link; if greater, take right link.

   ・If equal, take the middle link and move to the next key character.

  Search hit. Node where search ends has a non-null value.

  Search miss. Reach a null link or node where search ends has null value.





// C program to demonstrate Ternary Search Tree (TST) insert, travese
// and search operations
#include <stdio.h>
#include <stdlib.h>
#define MAX 50 // A node of ternary search tree
struct Node
{
char data; // True if this character is last character of one of the words
unsigned isEndOfString: 1; struct Node *left, *eq, *right;
}; // A utility function to create a new ternary search tree node
struct Node* newNode(char data)
{
struct Node* temp = (struct Node*) malloc(sizeof( struct Node ));
temp->data = data;
temp->isEndOfString = 0;
temp->left = temp->eq = temp->right = NULL;
return temp;
} // Function to insert a new word in a Ternary Search Tree
void insert(struct Node** root, char *word)
{
// Base Case: Tree is empty
if (!(*root))
*root = newNode(*word); // If current character of word is smaller than root's character,
// then insert this word in left subtree of root
if ((*word) < (*root)->data)
insert(&( (*root)->left ), word); // If current character of word is greate than root's character,
// then insert this word in right subtree of root
else if ((*word) > (*root)->data)
insert(&( (*root)->right ), word); // If current character of word is same as root's character,
else
{
if (*(word+1))
insert(&( (*root)->eq ), word+1); // the last character of the word
else
(*root)->isEndOfString = 1;
}
} // A recursive function to traverse Ternary Search Tree
void traverseTSTUtil(struct Node* root, char* buffer, int depth)
{
if (root)
{
// First traverse the left subtree
traverseTSTUtil(root->left, buffer, depth); // Store the character of this node
buffer[depth] = root->data;
if (root->isEndOfString)
{
buffer[depth+1] = '\0';
printf( "%s\n", buffer);
} // Traverse the subtree using equal pointer (middle subtree)
traverseTSTUtil(root->eq, buffer, depth + 1); // Finally Traverse the right subtree
traverseTSTUtil(root->right, buffer, depth);
}
} // The main function to traverse a Ternary Search Tree.
// It mainly uses traverseTSTUtil()
void traverseTST(struct Node* root)
{
char buffer[MAX];
traverseTSTUtil(root, buffer, 0);
} // Function to search a given word in TST
int searchTST(struct Node *root, char *word)
{
if (!root)
return 0; if (*word < (root)->data)
return searchTST(root->left, word); else if (*word > (root)->data)
return searchTST(root->right, word); else
{
if (*(word+1) == '\0')
return root->isEndOfString; return searchTST(root->eq, word+1);
}
} // Driver program to test above functions
int main()
{
struct Node *root = NULL; insert(&root, "cat");
insert(&root, "cats");
insert(&root, "up");
insert(&root, "bug"); printf("Following is traversal of ternary search tree\n");
traverseTST(root); printf("\nFollowing are search results for cats, bu and cat respectively\n");
searchTST(root, "cats")? printf("Found\n"): printf("Not Found\n");
searchTST(root, "bu")? printf("Found\n"): printf("Not Found\n");
searchTST(root, "cat")? printf("Found\n"): printf("Not Found\n"); return 0;
}

Output:

Following is traversal of ternary search tree

bug

cat

cats

up

Following are search results for cats, bu and cat respectively

Found

Not Found

Found

Time Complexity: The time complexity of the ternary search tree operations is similar to that of binary search tree. i.e. the insertion, deletion and search operations take time proportional to the height of the ternary search tree. The space is proportional to the length of the string to be stored.

Hashing.

・Need to examine entire key.

・Search hits and misses cost about the same.

・Performance relies on hash function.

・Does not support ordered symbol table operations.

TSTs.

・Works only for string (or digital) keys.

・Only examines just enough key characters.

・Search miss may involve only a few characters.

・Supports ordered symbol table operations (plus extras!). Red-black BST.

・Performance guarantee: log N key compares.

・Supports ordered symbol table API.

Hash tables.

・Performance guarantee: constant number of probes.

・Requires good hash function for key type.

Tries. R-way, TST.

・Performance guarantee: log N characters accessed.

・Supports character-based operations.

Ternary Tree的更多相关文章

  1. 数据结构《17》---- 自动补齐之《二》----Ternary Search Tree

    一. 序言 上一篇文章中,给出了 trie 树的一个实现.可以看到,trie 树有一个巨大的弊病,内存占用过大. 本文给出另一种数据结构来解决上述问题---- Ternary Search Tree ...

  2. Trie和Ternary Search Tree介绍

    Trie树 Trie树,又称字典树,单词查找树或者前缀树,是一种用于快速检索的多叉树结构,如英文字母的字典树是一个26叉树,数字的字典树是一个10叉树. Trie树与二叉搜索树不同,键不是直接保存在节 ...

  3. 数据结构《17》---- 自己主动补齐之《二》----Ternary Search Tree

    一. 序言 上一篇文章中,给出了 trie 树的一个实现. 能够看到,trie 树有一个巨大的弊病,内存占用过大. 本文给出还有一种数据结构来解决上述问题---- Ternary Search Tre ...

  4. IK分词器原理与源码分析

    原文:http://3dobe.com/archives/44/ 引言 做搜索技术的不可能不接触分词器.个人认为为什么搜索引擎无法被数据库所替代的原因主要有两点,一个是在数据量比较大的时候,搜索引擎的 ...

  5. 原创:Solr Wiki 中关于Suggester(搜索推荐)的简单解读

       Solr Wiki Suggester Suggester - a flexible "autocomplete" component.(搜索推荐) A common nee ...

  6. 计算广告(5)----query意图识别

    目录: 一.简介: 1.用户意图识别概念 2.用户意图识别难点 3.用户意图识别分类 4.意图识别方法: (1)基于规则 (2)基于穷举 (3)基于分类模型 二.意图识别具体做法: 1.数据集 2.数 ...

  7. 编解码再进化:Ali266 与下一代视频技术

    过去的一年见证了人类百年不遇的大事记,也见证了多种视频应用的厚积薄发.而因此所带来的视频数据量的爆发式增长更加加剧了对高效编解码这样的底层硬核技术的急迫需求. 新视频编解码标准 VVC 定稿不久之后, ...

  8. Ternary Search Tree 应用--搜索框智能提示

    前面介绍了Ternary Search Tree和它的实现,那么可以用Ternary Search Tree来实现搜索框的只能提示,因为Ternary Search Tree的前缀匹配效率是非常高的, ...

  9. Trie(前缀树)和ternary trie和binary search tree

    1 什么是trie trie是一棵多叉树,假如存放的是由26个字母(不区分大小写)构成的字符串的话,那么就是一棵26叉树. trie树是一棵前缀树,因为每个结点只保存字符串中的一个字符,整个字符串保存 ...

随机推荐

  1. updatedb---创建或更新slocate命令所必需的数据库文件

    updatedb命令用来创建或更新slocate命令所必需的数据库文件.updatedb命令的执行过程较长,因为在执行时它会遍历整个系统的目录树,并将所有的文件信息写入slocate数据库文件中. 补 ...

  2. 【J-meter】调试JDBC请求

    参考资料: http://www.codesec.net/view/165234.html

  3. 紫书 习题 10-15 UVa 12063(数位dp)

    大佬真的强!!https://blog.csdn.net/u014800748/article/details/45225881 #include<cstdio> #include< ...

  4. ArcGIS api for javascript——图形-使用多个图形图层

    描述 本例展示了如何增加多个图形图层到地图.一个图形图层显示国家,另一个显示城市.在一个地图中有多个图形图层的能力是在ArcGIS JavaScript API v1.4增加的. 从蓝色的城市点分隔灰 ...

  5. 在启动php时,无法启动此程序,由于计算机中丢失MSVCR110.dll的解决方法

    在启动php时,运行RunHiddenconsole.exe php-cgi.exe -b 127.0.0.1:9000 -c时,出现错误:无法启动此程序,由于计算机中丢失MSVCR110.dll 方 ...

  6. 数据格式转换 (三)Office文档转HTML

         HTML Filter 是由北京红樱枫软件有限公司根据HTML Ver 4.01/CSS式样,研制和开发的MS Office系列文档到HTML转换的通用程序库.便于用户实现对多种文档的统一管 ...

  7. 【Linux】JDK+Eclipse 搭建C/C++开发环境

    注:本文所提供的参考示例是在CentOS Linux环境下的安装,不保证适用于其他版本的Linux系统. ·    安装前的注意事项 编译源代码是需要对应的代码编译工具的,本文中安装的Eclipse只 ...

  8. 用三层交换建立企业VLAN

    650) this.width=650;" onclick='window.open("http://blog.51cto.com/viewpic.php?refimg=" ...

  9. POJ 1610 Count the Colors

    Count the Colors Time Limit: 2 Seconds      Memory Limit: 65536 KB Painting some colored segments on ...

  10. css line-height详解

    行高指的是文本行的基线间的距离(更简单来说,行高是指文字尺寸与行距之间的和). 而基线(Base line),指的是一行字横排时下沿的基础线, 基线并不是汉字的下端沿,而是英文字母x的下端沿,同时还有 ...