题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3231

裸矩阵乘法。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
ll K,b[],c[],m,n,p,ans1,ans2,s[];
struct Matrix{
ll a[][];
Matrix(){memset(a,,sizeof a);}
void init(){for(int i=;i<=K+;i++)a[i][i]=;}
Matrix operator * (const Matrix &y) const
{
Matrix ret;
for(int i=;i<=K+;i++)
for(int k=;k<=K+;k++)
for(int j=;j<=K+;j++)
(ret.a[i][j]+=a[i][k]*y.a[k][j])%=p;
return ret;
}
}f,g;
Matrix pw(Matrix a,ll b)
{
Matrix ret; ret.init();
for(;b;b>>=1ll,a=a*a)
if(b&)ret=ret*a;
return ret;
}
void print(Matrix x)
{
for(int i=;i<=K+;i++)
{
for(int j=;j<=K+;j++)
printf("%d",x.a[i][j]);
printf("\n");
}
}
int main()
{
scanf("%lld",&K);
for(int i=;i<=K;i++)scanf("%lld",&b[i]),f.a[][i]=b[i],s[i]=s[i-]+b[i];
f.a[][K+]=s[K-];
for(int i=;i<=K;i++)scanf("%lld",&c[i]);
scanf("%lld%lld%lld",&m,&n,&p);
for(int i=;i<K;i++)g.a[i+][i]=;
for(int i=;i<=K;i++)g.a[i][K]=c[K-i+];
g.a[K][K+]=g.a[K+][K+]=;
if(n<=K)ans1=s[n]%p;
else
{
Matrix aa=f*pw(g,n-K+);
ans1=aa.a[][K+];
}
if(m-<=K)ans2=s[m-]%p;
else
{
Matrix aa=f*pw(g,m-K);
ans2=aa.a[][K+];
}
printf("%lld\n",((ans1-ans2)%p+p)%p);//
return ;
}

bzoj 3231 [ Sdoi 2008 ] 递归数列 —— 矩阵乘法的更多相关文章

  1. bzoj 3231 [Sdoi2008]递归数列——矩阵乘法

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3231 矩阵乘法裸题. 1018是10^18.别忘了开long long. #include& ...

  2. [bzoj3231][SDOI2008]递归数列——矩阵乘法

    题目大意: 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...

  3. 【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂

    题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj  ...

  4. [luogu2461 SDOI2008] 递归数列 (矩阵乘法)

    传送门 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai- ...

  5. P2461 [SDOI2008]递归数列 矩阵乘法+构造

    还好$QwQ$ 思路:矩阵快速幂 提交:1次 题解: 如图: 注意$n,m$如果小于$k$就不要快速幂了,直接算就行... #include<cstdio> #include<ios ...

  6. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  7. BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )

    矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...

  8. BZOJ-3231 递归数列 矩阵连乘+快速幂

    题不是很难,但是啊,人很傻啊...机子也很鬼畜啊... 3231: [Sdoi2008]递归数列 Time Limit: 1 Sec Memory Limit: 256 MB Submit: 569 ...

  9. [BZOJ 2326] [HNOI2011] 数学作业 【矩阵乘法】

    题目链接:BZOJ - 2326 题目分析 数据范围达到了 10^18 ,显然需要矩阵乘法了! 可以发现,向数字尾部添加一个数字 x 的过程就是 Num = Num * 10^k + x .其中 k ...

随机推荐

  1. Mongodb——文档数据库

    mongodb是一个文档数据库. mongo操作 多个修改操作,但每个修改携带的数据包较小,可操作考虑批量操作.bulkWrite()改善性能. MongoCollection是线程安全的. db.c ...

  2. JS高级——作用域链

    基本概念 1.只要是函数就可以创造作用域 2.函数中又可以再创建函数 3.函数内部的作用域可以访问函数外部的作用域 4.如果有多个函数嵌套,那么就会构成一个链式访问结构,这就是作用域链 <scr ...

  3. R包

    查看默认安装包的位置 .libPaths() 移除包 remove.packages("package_name") 查看所有安装的包 library() 按 q 退出包列表   ...

  4. 一个数据去重sql

    参考: https://www.jb51.net/article/129656.htm DELETE testcaseFROM testcase,  (  SELECT  max(id) id,  a ...

  5. dva相关文档

    https://dvajs.com/guide/getting-started.html#%E5%AE%9A%E4%B9%89-model-------dva.js https://dvajs.com ...

  6. BZOJ 2276: [Poi2011]Temperature 单调队列

    Code: #include<bits/stdc++.h> #define maxn 3000000 using namespace std; void setIO(string s) { ...

  7. LINUX - 硬链接 软连接

    ---------------------------------------------------------------------------------------------------- ...

  8. hadoop手工移块

    1.关于磁盘使用策略,介绍参考http://www.it165.net/admin/html/201410/3860.html 在hadoop2.0中,datanode数据副本存放磁盘选择策略有两种方 ...

  9. selenium常用操作,查找元素,操作Cookie,获取截图,获取窗口信息,切换,执行js代码

    目录: 1. 常用操作 2. 查找元素 3. 操作Cookie 4. 获取截图 5. 获取窗口信息 6. 切换 7. 执行JS代码 简介 selenium.webdriver.remote.webdr ...

  10. 【Codeforces 161D】Distance in Tree

    [链接] 我是链接,点我呀:) [题意] 问你一棵树上有多少条长度为k的路径 [题解] 树形dp 设 size[i]表示以节点i为根节点的子树的节点个数 dp[i][k]表示以i为根节点的子树里面距离 ...