题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3231

裸矩阵乘法。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
ll K,b[],c[],m,n,p,ans1,ans2,s[];
struct Matrix{
ll a[][];
Matrix(){memset(a,,sizeof a);}
void init(){for(int i=;i<=K+;i++)a[i][i]=;}
Matrix operator * (const Matrix &y) const
{
Matrix ret;
for(int i=;i<=K+;i++)
for(int k=;k<=K+;k++)
for(int j=;j<=K+;j++)
(ret.a[i][j]+=a[i][k]*y.a[k][j])%=p;
return ret;
}
}f,g;
Matrix pw(Matrix a,ll b)
{
Matrix ret; ret.init();
for(;b;b>>=1ll,a=a*a)
if(b&)ret=ret*a;
return ret;
}
void print(Matrix x)
{
for(int i=;i<=K+;i++)
{
for(int j=;j<=K+;j++)
printf("%d",x.a[i][j]);
printf("\n");
}
}
int main()
{
scanf("%lld",&K);
for(int i=;i<=K;i++)scanf("%lld",&b[i]),f.a[][i]=b[i],s[i]=s[i-]+b[i];
f.a[][K+]=s[K-];
for(int i=;i<=K;i++)scanf("%lld",&c[i]);
scanf("%lld%lld%lld",&m,&n,&p);
for(int i=;i<K;i++)g.a[i+][i]=;
for(int i=;i<=K;i++)g.a[i][K]=c[K-i+];
g.a[K][K+]=g.a[K+][K+]=;
if(n<=K)ans1=s[n]%p;
else
{
Matrix aa=f*pw(g,n-K+);
ans1=aa.a[][K+];
}
if(m-<=K)ans2=s[m-]%p;
else
{
Matrix aa=f*pw(g,m-K);
ans2=aa.a[][K+];
}
printf("%lld\n",((ans1-ans2)%p+p)%p);//
return ;
}

bzoj 3231 [ Sdoi 2008 ] 递归数列 —— 矩阵乘法的更多相关文章

  1. bzoj 3231 [Sdoi2008]递归数列——矩阵乘法

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3231 矩阵乘法裸题. 1018是10^18.别忘了开long long. #include& ...

  2. [bzoj3231][SDOI2008]递归数列——矩阵乘法

    题目大意: 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...

  3. 【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂

    题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj  ...

  4. [luogu2461 SDOI2008] 递归数列 (矩阵乘法)

    传送门 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai- ...

  5. P2461 [SDOI2008]递归数列 矩阵乘法+构造

    还好$QwQ$ 思路:矩阵快速幂 提交:1次 题解: 如图: 注意$n,m$如果小于$k$就不要快速幂了,直接算就行... #include<cstdio> #include<ios ...

  6. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  7. BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )

    矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...

  8. BZOJ-3231 递归数列 矩阵连乘+快速幂

    题不是很难,但是啊,人很傻啊...机子也很鬼畜啊... 3231: [Sdoi2008]递归数列 Time Limit: 1 Sec Memory Limit: 256 MB Submit: 569 ...

  9. [BZOJ 2326] [HNOI2011] 数学作业 【矩阵乘法】

    题目链接:BZOJ - 2326 题目分析 数据范围达到了 10^18 ,显然需要矩阵乘法了! 可以发现,向数字尾部添加一个数字 x 的过程就是 Num = Num * 10^k + x .其中 k ...

随机推荐

  1. SQL基本操作——row_number() over()

    row_number() 与over()是在一起使用的,作用就是对表进行排序并记数. 语法: ROW_NUMBER ( ) OVER ( [ PARTITION BY value_expression ...

  2. Fast-RCNN论文翻译

    http://www.dengfanxin.cn/?p=423 原文地址 本文实现了Fast-RCNN主要部分的翻译工作,在SPPnet出来之后,同在微软的R-CNN的作者Ross迅速怼了回去,抛出了 ...

  3. Android控件的继承关系

    1.View,ViewGroup >View: }1.所有高级UI组件都继承View类而实现的 }2.一个View在屏幕上占据一块矩形区域 }3. 负责渲染 }4.负责处理发生的事件 }5.设置 ...

  4. JNI数组操作

    在Java中数组分为两种: 1.基本类型数组 2.对象类型(Object[])的数组(数组中存放的是指向Java对象中的引用) 一个能通用于两种不同类型数组的函数: GetArrayLength(ja ...

  5. Django——2 路由分配设置 re_path正则匹配 include总路由 url传参 name使用 模板渲染render方法 模板渲染方法

    Django 路由分配设置 re_path正则匹配 include总路由设置 url额外参数的传递 name的使用 模板的渲染:render方法   路由的分配中, 可以设定相应的转换器加以约束,比如 ...

  6. 字符串拼接原理 javac 和 javap

    一.新建一个 Test1 类 public class Test1 { public static void main(String[] args) { String a = "a" ...

  7. [Usaco2010 Mar]gather 奶牛大集会

    [Usaco2010 Mar]gather 奶牛大集会 题目 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 ...

  8. Grails用CONSOLE测试,比写集成测试还快

    一般,这个可以用过开发当中的脚本测试吧. 如果正规的开发流程里,集成测试显然可以作为报告提交,必不可少.

  9. 最小堆的两种实现及其STL代码

    #include<cstdio> #include<iostream> #include<algorithm> #include<vector> boo ...

  10. 洛谷 P1796 汤姆斯的天堂梦_NOI导刊2010提高(05)

    P1796 汤姆斯的天堂梦_NOI导刊2010提高(05) 题目描述 汤姆斯生活在一个等级为0的星球上.那里的环境极其恶劣,每天12小时的工作和成堆的垃圾让人忍无可忍.他向往着等级为N的星球上天堂般的 ...