【数据分析学习】016-numpy数据结构
import numpy
path = r'F:\数据分析专用\数据分析与机器学习\world_alcohol.txt'
world_alchol = numpy.genfromtxt(path, delimiter=",", dtype=str)
print(type(world_alchol))
print(world_alchol)
print(help(numpy.genfromtxt))
<class 'numpy.ndarray'>
[['Year' 'WHO region' 'Country' 'Beverage Types' 'Display Value']
['' 'Western Pacific' 'Viet Nam' 'Wine' '']
['' 'Americas' 'Uruguay' 'Other' '0.5']
...
['' 'Africa' 'Malawi' 'Other' '0.75']
['' 'Americas' 'Bahamas' 'Wine' '1.5']
['' 'Africa' 'Malawi' 'Spirits' '0.31']]
Help on function genfromtxt in module numpy.lib.npyio: genfromtxt(fname, dtype=<class 'float'>, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace_space='_', autostrip=False, case_sensitive=True, defaultfmt='f%i', unpack=None, usemask=False, loose=True, invalid_raise=True, max_rows=None, encoding='bytes')
Load data from a text file, with missing values handled as specified. Each line past the first `skip_header` lines is split at the `delimiter`
character, and characters following the `comments` character are discarded. Parameters
----------
fname : file, str, pathlib.Path, list of str, generator
File, filename, list, or generator to read. If the filename
extension is `.gz` or `.bz2`, the file is first decompressed. Note
that generators must return byte strings in Python 3k. The strings
in a list or produced by a generator are treated as lines.
dtype : dtype, optional
Data type of the resulting array.
If None, the dtypes will be determined by the contents of each
column, individually.
comments : str, optional
The character used to indicate the start of a comment.
All the characters occurring on a line after a comment are discarded
delimiter : str, int, or sequence, optional
The string used to separate values. By default, any consecutive
whitespaces act as delimiter. An integer or sequence of integers
can also be provided as width(s) of each field.
skiprows : int, optional
`skiprows` was removed in numpy 1.10. Please use `skip_header` instead.
skip_header : int, optional
The number of lines to skip at the beginning of the file.
skip_footer : int, optional
The number of lines to skip at the end of the file.
converters : variable, optional
The set of functions that convert the data of a column to a value.
The converters can also be used to provide a default value
for missing data: ``converters = {3: lambda s: float(s or 0)}``.
missing : variable, optional
`missing` was removed in numpy 1.10. Please use `missing_values`
instead.
missing_values : variable, optional
The set of strings corresponding to missing data.
filling_values : variable, optional
The set of values to be used as default when the data are missing.
usecols : sequence, optional
Which columns to read, with 0 being the first. For example,
``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns.
names : {None, True, str, sequence}, optional
If `names` is True, the field names are read from the first line after
the first `skip_header` lines. This line can optionally be proceeded
by a comment delimeter. If `names` is a sequence or a single-string of
comma-separated names, the names will be used to define the field names
in a structured dtype. If `names` is None, the names of the dtype
fields will be used, if any.
excludelist : sequence, optional
A list of names to exclude. This list is appended to the default list
['return','file','print']. Excluded names are appended an underscore:
for example, `file` would become `file_`.
deletechars : str, optional
A string combining invalid characters that must be deleted from the
names.
defaultfmt : str, optional
A format used to define default field names, such as "f%i" or "f_%02i".
autostrip : bool, optional
Whether to automatically strip white spaces from the variables.
replace_space : char, optional
Character(s) used in replacement of white spaces in the variables
names. By default, use a '_'.
case_sensitive : {True, False, 'upper', 'lower'}, optional
If True, field names are case sensitive.
If False or 'upper', field names are converted to upper case.
If 'lower', field names are converted to lower case.
unpack : bool, optional
If True, the returned array is transposed, so that arguments may be
unpacked using ``x, y, z = loadtxt(...)``
usemask : bool, optional
If True, return a masked array.
If False, return a regular array.
loose : bool, optional
If True, do not raise errors for invalid values.
invalid_raise : bool, optional
If True, an exception is raised if an inconsistency is detected in the
number of columns.
If False, a warning is emitted and the offending lines are skipped.
max_rows : int, optional
The maximum number of rows to read. Must not be used with skip_footer
at the same time. If given, the value must be at least 1. Default is
to read the entire file. .. versionadded:: 1.10.0
encoding : str, optional
Encoding used to decode the inputfile. Does not apply when `fname` is
a file object. The special value 'bytes' enables backward compatibility
workarounds that ensure that you receive byte arrays when possible
and passes latin1 encoded strings to converters. Override this value to
receive unicode arrays and pass strings as input to converters. If set
to None the system default is used. The default value is 'bytes'. .. versionadded:: 1.14.0 Returns
-------
out : ndarray
Data read from the text file. If `usemask` is True, this is a
masked array. See Also
--------
numpy.loadtxt : equivalent function when no data is missing. Notes
-----
* When spaces are used as delimiters, or when no delimiter has been given
as input, there should not be any missing data between two fields.
* When the variables are named (either by a flexible dtype or with `names`,
there must not be any header in the file (else a ValueError
exception is raised).
* Individual values are not stripped of spaces by default.
When using a custom converter, make sure the function does remove spaces. References
----------
.. [1] NumPy User Guide, section `I/O with NumPy
<http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_. Examples
---------
>>> from io import StringIO
>>> import numpy as np Comma delimited file with mixed dtype >>> s = StringIO("1,1.3,abcde")
>>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'),
... ('mystring','S5')], delimiter=",")
>>> data
array((1, 1.3, 'abcde'),
dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Using dtype = None >>> s.seek(0) # needed for StringIO example only
>>> data = np.genfromtxt(s, dtype=None,
... names = ['myint','myfloat','mystring'], delimiter=",")
>>> data
array((1, 1.3, 'abcde'),
dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Specifying dtype and names >>> s.seek(0)
>>> data = np.genfromtxt(s, dtype="i8,f8,S5",
... names=['myint','myfloat','mystring'], delimiter=",")
>>> data
array((1, 1.3, 'abcde'),
dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) An example with fixed-width columns >>> s = StringIO("11.3abcde")
>>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'],
... delimiter=[1,3,5])
>>> data
array((1, 1.3, 'abcde'),
dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')]) None
用array输入数组
vector = numpy.array([5, 10, 15, 20])
matrix = numpy.array([[5, 10, 15], [20, 25, 30], [35, 40, 45]])
print(vector)
print(matrix)
输出结果
vector = numpy.array([1, 2, 3, 4])
print(vector.shape)
matrix = numpy.array([[5, 10, 15], [20, 25, 30]])
print(matrix.shape)
import numpy
numbers = numpy.array([1, 2, 3, 4, 0, 5.0])
print(numbers)
numbers.dtype

world_alchol = numpy.genfromtxt(path, delimiter=',', dtype=str, skip_header=1)
print(world_alchol)
文件读取

输出的是一个列表,那么读取的时候就可以根据切片读取出列表的值
uruguay_other_1986 = world_alchol[1, 4]
third_country = world_alchol[2, 2]
print(uruguay_other_1986)
print(third_country)
切片取值

【数据分析学习】016-numpy数据结构的更多相关文章
- Python数据分析学习之Numpy
Numpy的简单操作 import numpy #导入numpy包 file = numpy.genfromtxt("文件路径",delimiter=" ",d ...
- Python数据分析学习目录
python数据分析学习目录 Anaconda的安装和更新 矩阵NumPy pandas数据表 matplotlib-2D绘图库学习目录
- 个人永久性免费-Excel催化剂功能第100波-透视多行数据为多列数据结构
在数据处理过程中,大量的非预期格式结构需要作转换,有大家熟知的多维转一维(准确来说应该是交叉表结构的数据转二维表标准数据表结构),也同样有一些需要透视操作的数据源,此篇同样提供更便捷的方法实现此类数据 ...
- Python数据分析学习(二):Numpy数组对象基础
1.1数组对象基础 .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { bord ...
- Python数据分析学习(一):Numpy与纯Python计算向量加法速度比较
import sys from datetime import datetime import numpy as np def numpysum(n): a = np.arange(n) ** 2 b ...
- python数据分析学习(2)pandas二维工具DataFrame讲解
目录 二:pandas数据结构介绍 下面继续讲解pandas的第二个工具DataFrame. 二:pandas数据结构介绍 2.DataFarme DataFarme表示的是矩阵的数据表,包含 ...
- python数据分析学习(1)pandas一维工具Series讲解
目录 一:pandas数据结构介绍 python是数据分析的主要工具,它包含的数据结构和数据处理工具的设计让python在数据分析领域变得十分快捷.它以NumPy为基础,并对于需要类似 for循环 ...
- 数据分析学习(zhuan)
http://www.zhihu.com/question/22119753 http://www.zhihu.com/question/20757000 ********************** ...
- [python]-数据科学库Numpy学习
一.Numpy简介: Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针.这样为了保存一个简单的[1,2,3],需要有3 ...
随机推荐
- lucene_08_solr导入数据库数据
一步:在solr家目录中导入 下图的jar包 第二步:配置solr 家目录 solr_home\collection1\conf\solrconfig.xml.在config标签下加入requestH ...
- 【ACM】hdu_zs2_1004_Problem D _201308030856
Problem D Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)Total Subm ...
- [bzoj4487][Jsoi2015]染色_容斥原理
染色 bzoj-4487 Jsoi-2015 题目大意:给你一个n*m的方格图,在格子上染色.有c中颜色可以选择,也可以选择不染.求满足条件的方案数,使得:每一行每一列都至少有一个格子被染色,且所有的 ...
- Linux中tty是什么(tty1~7)
tty:终端设备的统称. tty一词源于Teletypes,或者teletypewriters,原来指的是电传打字机,是通过串行线用打印机键盘通过阅读和发送信息的东西,后来这东西被键盘与显示器取代,所 ...
- win10使用WampServer部署magento
1.安装wampserver及php.apache.mySQL组件,访问http://www.wampserver.com/en/#download-wrapper,下载以下文件并依次安装: ...
- [Cypress] Stub Network Requests in a Cypress Test
To keep our tests fast and easily repeatable, it makes sense to create many integration tests and fe ...
- Struts简单介绍
一.在介绍struts之前,先来了解一下什么是MVC框架吧. 1.MVC介绍 MVC全名是Model View Controller.是模型(model)-视图(view)-控制器(controlle ...
- 推送_即时推送_即时通讯_在线Demo
[伊尚]美容店(万达店)找创业合伙人(限女生) 点击查看Demo 线上预览 运行Demo截图如下: 线上预览
- 贪吃蛇c++实现
近期没事翻了一下曾经写的程序.真是不堪入目.曾经真是什么都不懂.只是有一个程序倒是挺有意思的,大二的时候写的一个贪吃蛇游戏.尽管程序非常难看,还有非常多漏洞.但也是这个程序让我真正開始喜欢上了编程.不 ...
- HTTP缓存和CDN缓存
一 http缓存 1.1缓存的分类: http中具有缓存功能的是:1.浏览器缓存. 2.缓存代理服务器. 1.2 什么是缓存: http缓存的是指:当Web请求抵达缓存时, 如果本地有“已缓存的”副 ...