思路:

通过打表观察 这是个卡特兰数

但是它mod的数不是质数 怎么办呢

把所有数分解质因数好了

线性筛出mindiv  顺着mindiv分解质因数

复杂度$O(nlogn)$

//By SiriusRen
#include <cstdio>
using namespace std;
const int N=;
int n,p,prime[N],top,mindiv[N],cnt[N];
void get_prime(){
for(int i=;i<=;i++){
if(!mindiv[i])prime[++top]=i,mindiv[i]=i;
for(int j=;j<=top&&i*prime[j]<=;j++){
mindiv[i*prime[j]]=prime[j];
if(i%prime[j]==)break;
}
}
}
int main(){
get_prime();
scanf("%d%d",&n,&p);
for(int i=;i<=n;i++){
int temp=i;
while(temp!=)cnt[mindiv[temp]]--,temp/=mindiv[temp];
}
for(int i=n+;i<=*n;i++){
int temp=i;
while(temp!=)cnt[mindiv[temp]]++,temp/=mindiv[temp];
}
long long ans=;
for(int i=;i<=*n;i++)
for(int j=;j<=cnt[i];j++)
ans=ans*i%p;
printf("%lld\n",ans);
}

BZOJ 1485 卡特兰数 数学的更多相关文章

  1. bzoj 1485 卡特兰数 + 分解因子

    思路:打表可以看出是卡特兰数,但是模数不一定是素数,所以需要分解一下因数. #include<bits/stdc++.h> #define LL long long #define fi ...

  2. HDU 1023(卡特兰数 数学)

    题意是求一列连续升序的数经过一个栈之后能变成的不同顺序的数目. 开始时依然摸不着头脑,借鉴了别人的博客之后,才知道这是卡特兰数,卡特兰数的计算公式是:a( n )  =  ( ( 4*n-2 ) / ...

  3. bzoj 1856 卡特兰数

    复习了一下卡特兰数.. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #d ...

  4. bzoj 1485 [HNOI2009]有趣的数列 卡特兰数

    把排好序的序列看成一对对括号,要把他们往原数列里塞,所以就是括号序合法方案数 即为卡特兰数 f(n)=Cn2nn+1 求的时候为避免除法,可以O(n)计算每个素数出现次数,最后乘起来,打完之后发现其实 ...

  5. 【BZOJ 1485】[HNOI2009]有趣的数列 卡特兰数

    这个题我是冲着卡特兰数来的所以就没有想到什么dp,当然也没有想到用卡特兰数的原因........... 你只要求出前几项就会发现是个卡特兰数,为什么呢:我们选择地时候要选择奇数位和偶数位,相邻(一对里 ...

  6. BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )

    打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... -------------- ...

  7. 【BZOJ 2822】[AHOI2012]树屋阶梯 卡特兰数+高精

    这道题随便弄几个数就发现是卡特兰数然而为什么是呢? 我们发现我们在增加一列时,如果这一个东西(那一列)他就一格,那么就是上一次的方案数,并没有任何改变,他占满了也是,然后他要是占两格呢,就是把原来的切 ...

  8. Bzoj 1856: [Scoi2010]字符串 卡特兰数,乘法逆元,组合数,数论

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1194  Solved: 651[Submit][Status][ ...

  9. bzoj 2822 [AHOI2012]树屋阶梯 卡特兰数

    因为规定n层的阶梯只能用n块木板 那么就需要考虑,多出来的一块木板往哪里放 考虑往直角处放置新的木板 不管怎样,只有多的木板一直扩展到斜边表面,才会是合法的新状态,发现,这样之后,整个n层阶梯就被分成 ...

随机推荐

  1. Java:Java 队列的遍历

    Java队列到底有没有可以遍历的功能呢?暂且试一下吧 参考链接:stl容器遍历测试 1.LinkedList实现简单遍历 for(Iter =LocTimesSerials.size()-1; iSe ...

  2. 【技术累积】【点】【编程】【13】XX式编程

    (原)函数式编程 核心概念 函数式一等公民(输入输出啥的都可以是函数): 纯函数,固定输入带来固定输出: 阅读性良好,无并发问题,但效率偏低: 大历史背景 旨在描述问题如何计算: 有两位巨擘对问题的可 ...

  3. js document 触发按键事件

    // 键盘控制 var keyEvent = (function () { document.onkeydown = function (e) { if (e.keyCode === 38) { // ...

  4. Linux 重要文件目录

    文件系统层次化标准(Filesystem Hierarchy Standard)[FHS] 树形结构 /boot 开机所需文件——内核开机菜单以及所需的配置文件等 /dev 以文件形式存放任何设备与接 ...

  5. 小程序组件 Vant Weapp 安装

    文件夹的名称必须是英文 第一步:npm init -y 第二步:npm i vant-weapp -S --production

  6. eas之导入导出

    // 是否仅导出有数据的区域,该方法对所有的导出生效(默认为false)table.getIOManager().setExpandedOnly(true); 输入KDF 如果你已经有了一个完整的KD ...

  7. LINUX KERNEL SPINLOCK使用不当的后果

    LINUX KERNEL SPINLOCK使用不当的后果 spinlock(自旋锁)是内核中最常见的锁,它的特点是:等待锁的过程中不休眠,而是占着CPU空转,优点是避免了上下文切换的开销,缺点是该CP ...

  8. 58.fetch phbase

    1.fetch phbase工作流程 The coordinating node identifies which documents need to be fetched and issues a ...

  9. 2019-05-14 Python SSL

    解决SSL报错问题 -- 导库 import ssl import urllib.request context = ssl._create_unverified_context() --用urlli ...

  10. P1040 加分二叉树(树上记忆化搜素)

    这道题很水 但我没做出来……………………………… 我写的时候状态设计错了,设计dp[l][m][r]为从l到r以m为根的值 这样写遍历状态就是n^3的,会TLE. 而且写路径的时候是用结构体写的,这样 ...