【算法导论-36】并查集(Disjoint Set)具体解释
WiKi
Disjoint是“不相交”的意思。Disjoint Set高效地支持集合的合并(Union)和集合内元素的查找(Find)两种操作,所以Disjoint Set中文翻译为并查集。
就《算法导论》21章来讲,主要设计这几个知识点:
用并查集计算图的连通区域;
推断两个顶点是否属于同一个连通区域;
链表实现并查集;
Rooted tree实现并查集;
Rooted tree实现并查集时採用rank方法和路径压缩算法。
《算法导论》21.4给出了一个结论:总计m个MAKE-SET、UNION、FIND-SET操作。当中MAKE-SET的个数为n,则採用rank和路径压缩算法实现的并查集最坏时间复杂度是O(m α(n) )。当中α是Ackerman函数的某个反函数,这个函数的值能够看成是不大于4。所以,并查集的三种典型操作的时间复杂度是线性的。
相关资料
并查集的java实现
这里依据《算法导论》的21.3节的伪代码,实现了一个泛型的并查集。输出时,打印节点及其集合的代表元素(即根元素。representative)。
import java.util.ArrayList;
import java.util.List;
import java.util.TreeSet;
/**
* <p>并查集的实现<p/>
* <p>參考:《算法导论》21.3节<p/>
* <p>created by 曹艳丰<p/>
* <p>2016-08-31<p/>
*
* */
public class DisjointSet<T> {
private List<Node> forests;//全部节点
public DisjointSet(){
forests=new ArrayList<Node>();
}
/**
* 内部类,并查集的rooted node
* */
private class Node{
Node parent;
int rank;
T t;
private Node(T t){
parent=this;
rank=0;
this.t=t;
}
}
//向森林中加入节点
public void makeSet(T t){
Node node=new Node(t);
forests.add(node);
}
//将包括x和包括y的两个集合进行合并
public void union(T x,T y){
Node xNode=isContain(x);
Node yNode=isContain(y);
if (xNode!=null&&yNode!=null) {
link(findSet(xNode), findSet(yNode));
}
}
//查找到节点node的根节点
public Node findSet(Node node){
if (node!=node.parent) {
//路径压缩,參考《算法导论》插图21.5
node.parent=findSet(node.parent);
}
return node.parent;
}
//查找到节点node的根节点
public Node findSet(T t){
Node node=isContain(t);
if (node==null) {
throw new IllegalArgumentException("不含该节点!
");
}else {
return findSet(node);
}
}
//将两个根节点代表的集合进行连接
private void link(Node xNode,Node yNode){
if (xNode.rank>yNode.rank) {
yNode.parent=xNode;
}else {
xNode.parent=yNode;
if (xNode.rank==yNode.rank) {
yNode.rank+=1;
}
}
}
//森林是否包括这个节点
private Node isContain(T t){
for (Node node : forests) {
if (node.t.equals(t)) {
return node;
}
}
return null;
}
@Override
public String toString() {
// TODO Auto-generated method stub
if (forests.size()==0) {
return "并查集为空!";
}
StringBuilder builder=new StringBuilder();
for (Node node : forests) {
Node root=findSet(node);
builder.append(node.t).append("→").append(root.t);
builder.append("\n");
}
return builder.toString();
}
}
然后測试一下
public class Main{
public static void main(String[] args) {
// TODO Auto-generated method stub
DisjointSet<String> disjointSet=new DisjointSet<String>();
disjointSet.makeSet("cao");
disjointSet.makeSet("yan");
disjointSet.makeSet("feng");
disjointSet.union("cao", "yan");
disjointSet.union("cao", "feng");
System.out.println(disjointSet.toString());
}
}
输出格式,元素→代表元素
cao→yan
yan→yan
feng→yan
表明3个节点的代表元素一致。即处于一个集合中。
图的连通区域计算`
《算法导论》21.1节的伪代码。这里给出连通区域计算的样例。图的数据结构採用“【算法导论-35】图算法JGraphT开源库介绍 “中的无向图。
private static void connectedComponents(){
UndirectedGraph<String, DefaultEdge> g =
new SimpleGraph<>(DefaultEdge.class);
String v1 = "v1";
String v2 = "v2";
String v3 = "v3";
String v4 = "v4";
// add the vertices
g.addVertex(v1);
g.addVertex(v2);
g.addVertex(v3);
g.addVertex(v4);
// add edges to create a circuit
g.addEdge(v1, v2);
g.addEdge(v2, v3);
//连通区域计算
//參考《算法导论》21.1节
DisjointSet<String> disjointSet=new DisjointSet<String>();
for ( String v : g.vertexSet()) {
disjointSet.makeSet(v);
}
// for ( DefaultEdge e : g.edgeSet()) {
// String source=e.getSource();//protected訪问类型
// String target=e.getTarget();//protected訪问类型
// if (disjointSet.findSet(source)!=disjointSet.findSet(target)) {
// disjointSet.union(source, target);
// }
// }
if (disjointSet.findSet(v1)!=disjointSet.findSet(v2)) {
disjointSet.union(v1, v2);
}
if (disjointSet.findSet(v2)!=disjointSet.findSet(v3)) {
disjointSet.union(v2, v3);
}
System.out.println(disjointSet.getSetCounter());
}
输出
v1→v2
v2→v2
v3→v2
v4→v4
v1、v2、v3的代表元素一致。表明三者在一个集合中,即三者连通。
v4是另外一个集合。
实例应用
举个样例,某人结婚时宴请宾客,A来宾认识B来宾,B来宾认识C来宾,则A、B、C安排在一桌。
A来宾认识B来宾,且A、B的熟人及其熟人的熟人(熟人链)不包括C,则C与A、B不在一桌。问。须要多少桌子才干满足要求呢?
这个样例事实上就是连通区域的详细到社交关系的1度、2度……n度关系。
略微改动并查集的实例,加入集合的计数setCounter,每次makeset时递增,union时递减。这样就得到最后的集合个数。
import java.util.ArrayList;
import java.util.List;
import java.util.TreeSet;
/**
* <p>并查集的实现<p/>
* <p>參考:《算法导论》21.3节<p/>
* <p>created by 曹艳丰<p/>
* <p>2016-08-31<p/>
*
* */
public class DisjointSet<T> {
private List<Node> forests;//全部节点
private int setCounter;//集合计数
public DisjointSet(){
forests=new ArrayList<Node>();
setCounter=0;
}
public int getSetCounter() {
return setCounter;
}
/**
* 内部类,并查集的rooted node
* */
private class Node{
Node parent;
int rank;
T t;
private Node(T t){
parent=this;
rank=0;
this.t=t;
}
}
//向森林中加入节点
public void makeSet(T t){
Node node=new Node(t);
forests.add(node);
setCounter++;
}
//将包括x和包括y的两个集合进行合并
public void union(T x,T y){
if (x.equals(y)) {
throw new IllegalArgumentException("Union的两个元素不能相等。");
}
Node xNode=isContain(x);
Node yNode=isContain(y);
if (xNode!=null&&yNode!=null) {
link(findSet(xNode), findSet(yNode));
setCounter--;
}
}
//查找到节点node的根节点
public Node findSet(Node node){
if (node!=node.parent) {
//路径压缩,參考《算法导论》插图21.5
node.parent=findSet(node.parent);
}
return node.parent;
}
//查找到节点node的根节点
public Node findSet(T t){
Node node=isContain(t);
if (node==null) {
throw new IllegalArgumentException("不含该节点!
");
}else {
return findSet(node);
}
}
//将两个根节点代表的集合进行连接
private void link(Node xNode,Node yNode){
if (xNode.rank>yNode.rank) {
yNode.parent=xNode;
}else {
xNode.parent=yNode;
if (xNode.rank==yNode.rank) {
yNode.rank+=1;
}
}
}
//森林是否包括这个节点
private Node isContain(T t){
for (Node node : forests) {
if (node.t.equals(t)) {
return node;
}
}
return null;
}
@Override
public String toString() {
// TODO Auto-generated method stub
if (forests.size()==0) {
return "并查集为空!";
}
StringBuilder builder=new StringBuilder();
for (Node node : forests) {
Node root=findSet(node);
builder.append(node.t).append("→").append(root.t);
builder.append("\n");
}
return builder.toString();
}
}
连通区域的计算,只是这里输出的是集合个数。
private static void connectedComponents(){
UndirectedGraph<String, DefaultEdge> g =
new SimpleGraph<>(DefaultEdge.class);
String v1 = "v1";
String v2 = "v2";
String v3 = "v3";
String v4 = "v4";
// add the vertices
g.addVertex(v1);
g.addVertex(v2);
g.addVertex(v3);
g.addVertex(v4);
// add edges to create a circuit
g.addEdge(v1, v2);
g.addEdge(v2, v3);
//连通区域计算
//參考《算法导论》21.1节
DisjointSet<String> disjointSet=new DisjointSet<String>();
for ( String v : g.vertexSet()) {
disjointSet.makeSet(v);
}
// for ( DefaultEdge e : g.edgeSet()) {
// String source=e.getSource();//protected訪问类型
// String target=e.getTarget();//protected訪问类型
// if (disjointSet.findSet(source)!=disjointSet.findSet(target)) {
// disjointSet.union(source, target);
// }
// }
if (disjointSet.findSet(v1)!=disjointSet.findSet(v2)) {
disjointSet.union(v1, v2);
}
if (disjointSet.findSet(v2)!=disjointSet.findSet(v3)) {
disjointSet.union(v2, v3);
}
System.out.println(disjointSet.getSetCounter());
}
输出是2。
【算法导论-36】并查集(Disjoint Set)具体解释的更多相关文章
- 【算法与数据结构】并查集 Disjoint Set
并查集(Disjoint Set)用来判断已有的数据是否构成环. 在构造图的最小生成树(Minimum Spanning Tree)时,如果采用 Kruskal 算法,每次添加最短路径前,需要先用并查 ...
- 并查集(Disjoint Set)
在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中.这一类问题其特点是看似并不复杂, ...
- 【数据结构】【计算机视觉】并查集(disjoint set)结构介绍
1.简述 在实现多图像无序输入的拼接中,我们先使用surf算法对任意两幅图像进行特征点匹配,每对图像的匹配都有一个置信度confidence参数,来衡量两幅图匹配的可信度,当confidence> ...
- hdu 4641 K-string SAM的O(n^2)算法 以及 SAM+并查集优化
链接:http://acm.hdu.edu.cn/showproblem.php?pid=4641 题意:有一个长度为n(n < 5e4)的字符串,Q(Q<=2e5)次操作:操作分为:在末 ...
- hdu 1233(还是畅通project)(prime算法,克鲁斯卡尔算法)(并查集,最小生成树)
还是畅通project Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- POJ 2421 Constructing Roads (Kruskal算法+压缩路径并查集 )
Constructing Roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 19884 Accepted: 83 ...
- hdu 4641K-string SAM的O(n^2)算法 以及 SAM+并查集优化
转载:http://www.cnblogs.com/hxer/p/5675149.html 题意:有一个长度为n(n < 5e4)的字符串,Q(Q<=2e5)次操作:操作分为:在末尾插入一 ...
- 距离LCA离线算法Tarjan + dfs + 并查集
距离B - Distance in the Tree 还是普通的LCA但是要求的是两个节点之间的距离,学到了一些 一开始我想用带权并查集进行优化,但是LCA合并的过程晚于离线计算的过程,所以路径长度会 ...
- 并查集(Disjoint Set Union,DSU)
定义: 并查集是一种用来管理元素分组情况的数据结构. 作用: 查询元素a和元素b是否属于同一组 合并元素a和元素b所在的组 优化方法: 1.路径压缩 2.添加高度属性 拓展延伸: 分组并查集 带权并查 ...
随机推荐
- 今日SGU 5.23
SGU 223 题意:给你n*n的矩形,放k个国王,每个国王不能放在别的国王的8连边上,问你有多少种方法 收获:状态DP,因为每行的放置只会影响下一行,然我们就枚举每行的状态和对应的下一行的状态,当两 ...
- PHP 使用Apache 中的ab 測试站点的压力性能
打开Apacheserver的安装路径(我用的是 WampServer),在bin文件夹中有一个ab.exe的可运行程序,它就是要介绍的压力測试工具. watermark/2/text/aHR0cDo ...
- 设置select组件中的默认值
会员卡类型 <select id="name2" style="width:140px"> <option value="Ak& ...
- js---11运算符,流程控制,真假
<!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...
- kafka自带没web ui界面,怎么办?安装个第三方的
见 基于Web的Kafka管理器工具之Kafka-manager的编译部署详细安装 (支持kafka0.8.0.9和0.10以后版本)(图文详解)(默认端口或任意自定义端口)
- 上市公司恋上互联网金融 目前已有14家涌入P2P
时至今日,互联网金融已蔚然成风,诸多上市公司正前赴后继介入到P2P业务中,据记者初步统计,目前至少有14家A股上市公司参与了P2P业务.央行6月份的报告显示,中国当前有600多家P2P公司,交易额达到 ...
- ubuntu系统配置WinQQ
首先安装Wine sudo add-apt-repository ppa:wine/wine-builds sudo apt-get update sudo apt-get install wineh ...
- python 时间库的用法 时区的转化
1. 月份的加减 https://blog.csdn.net/qq_18863573/article/details/79444094 第三方模块:python-dateutil import dat ...
- 用node.js从零开始去写一个简单的爬虫
如果你不会Python语言,正好又是一个node.js小白,看完这篇文章之后,一定会觉得受益匪浅,感受到自己又新get到了一门技能,如何用node.js从零开始去写一个简单的爬虫,十分钟时间就能搞定, ...
- ANSI-X99MAC算法和PBOC的3DES MAC算法
仅仅要有标准的DES加密和解密算法.类似ANSI-X99MAC算法和PBOC3DES算法就非常好实现.他们都是用DES算法再经过一层算法实现的.实现原理看图就能看明确.3DES算法实现就更简单了.就是 ...