传送门

给定 n 个字符串,求出现或反转后出现在每个字符串中的最长子串。

算法分析:

这题不同的地方在于要判断是否在反转后的字符串中出现。其实这并没有加大题目的难度。

只需要先将每个字符串都反过来写一遍,中间用一个互不相同的且没有出现在字符串中的字符隔开,

再将 n 个字符串全部连起来,中间也是用一个互不相同的且没有出现在字符串中的字符隔开,求后缀数组。

然后二分答案,再将后缀分组。

判断的时候,要看是否有一组后缀在每个原来的字符串或反转后的字符串中出现。

这个做法的时间复杂度为 O(nlogn)。

——代码

 #include <cstdio>
#include <cstring>
#include <iostream>
#define N 21001 int len, n, m, max_num, T;
int buc[N], x[N], y[N], sa[N], rank[N], height[N], belong[N], s[N];
char a[N];
bool f[]; inline void build_sa()
{
int i, k, p;
for(i = ; i < m; i++) buc[i] = ;
for(i = ; i < len; i++) buc[x[i] = s[i]]++;
for(i = ; i < m; i++) buc[i] += buc[i - ];
for(i = len - ; i >= ; i--) sa[--buc[x[i]]] = i;
for(k = ; k <= len; k <<= )
{
p = ;
for(i = len - ; i >= len - k; i--) y[p++] = i;
for(i = ; i < len; i++) if(sa[i] >= k) y[p++] = sa[i] - k;
for(i = ; i < m; i++) buc[i] = ;
for(i = ; i < len; i++) buc[x[y[i]]]++;
for(i = ; i < m; i++) buc[i] += buc[i - ];
for(i = len - ; i >= ; i--) sa[--buc[x[y[i]]]] = y[i];
std::swap(x, y);
p = , x[sa[]] = ;
for(i = ; i < len; i++)
x[sa[i]] = y[sa[i - ]] == y[sa[i]] && y[sa[i - ] + k] == y[sa[i] + k] ? p - : p++;
if(p >= len) break;
m = p;
}
} inline void build_height()
{
int i, j, k = ;
for(i = ; i < len; i++) rank[sa[i]] = i;
for(i = ; i < len; i++)
{
if(!rank[i]) continue;
if(k) k--;
j = sa[rank[i] - ];
while(s[i + k] == s[j + k] && i + k < len && j + k < len) k++;
height[rank[i]] = k;
}
} inline bool check(int k)
{
int i, cnt = ;
memset(f, , sizeof(f));
f[belong[sa[]]] = ;
for(i = ; i < len; i++)
if(height[i] >= k && !f[belong[sa[i]]])
{
cnt++;
f[belong[sa[i]]] = ;
if(cnt == n) return ;
}
else if(height[i] < k)
{
cnt = ;
memset(f, , sizeof(f));
f[belong[sa[i]]] = ;
}
return ;
} inline int solve()
{
int l = , r = len, ans = , mid;
while(l <= r)
{
mid = (l + r) >> ;
if(check(mid)) ans = mid, l = mid + ;
else r = mid - ;
}
return ans;
} int main()
{
int i, j, l;
scanf("%d", &T);
while(T--)
{
len = ;
m = ;
scanf("%d", &n);
for(i = ; i < n; i++)
{
scanf("%s", a);
l = strlen(a);
for(j = ; j < l; j++) belong[len] = i, s[len++] = a[j];
belong[len] = i;
s[len++] = + (i << );
for(j = l - ; j >= ; j--) belong[len] = i, s[len++] = a[j];
belong[len] = i;
s[len++] = + (i << | );
}
len--;
build_sa();
build_height();
if(n == )
{
printf("%d\n", l);
continue;
}
printf("%d\n", solve());
}
return ;
}

[POJ1226]Substrings(后缀数组)的更多相关文章

  1. POJ1226 Substrings ——后缀数组 or 暴力+strstr()函数 最长公共子串

    题目链接:https://vjudge.net/problem/POJ-1226 Substrings Time Limit: 1000MS   Memory Limit: 10000K Total ...

  2. POJ1226:Substrings(后缀数组)

    Description You are given a number of case-sensitive strings of alphabetic characters, find the larg ...

  3. UVALive - 6869 Repeated Substrings 后缀数组

    题目链接: http://acm.hust.edu.cn/vjudge/problem/113725 Repeated Substrings Time Limit: 3000MS 样例 sample ...

  4. POJ3415 Common Substrings —— 后缀数组 + 单调栈 公共子串个数

    题目链接:https://vjudge.net/problem/POJ-3415 Common Substrings Time Limit: 5000MS   Memory Limit: 65536K ...

  5. SPOJ - SUBST1 New Distinct Substrings —— 后缀数组 单个字符串的子串个数

    题目链接:https://vjudge.net/problem/SPOJ-SUBST1 SUBST1 - New Distinct Substrings #suffix-array-8 Given a ...

  6. SPOJ- Distinct Substrings(后缀数组&后缀自动机)

    Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...

  7. SPOJ - DISUBSTR Distinct Substrings (后缀数组)

    Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...

  8. POJ 3415 Common Substrings 后缀数组+并查集

    后缀数组,看到网上很多题解都是单调栈,这里提供一个不是单调栈的做法, 首先将两个串 连接起来求height   求完之后按height值从大往小合并.  height值代表的是  sa[i]和sa[i ...

  9. SPOJ DISUBSTR Distinct Substrings 后缀数组

    题意:统计母串中包含多少不同的子串 然后这是09年论文<后缀数组——处理字符串的有力工具>中有介绍 公式如下: 原理就是加上新的,减去重的,这题是因为打多校才补的,只能说我是个垃圾 #in ...

  10. ●SPOJ 8222 NSUBSTR - Substrings(后缀数组)

    题链: http://www.spoj.com/problems/NSUBSTR/ 题解: 同届红太阳 --WSY给出的后缀数组解法!!! 首先用倍增算法求出 sa[i],rak[i],hei[i]然 ...

随机推荐

  1. 涨知识---IV

    1.如何减少换页错误? A.进程倾向于占用CPU. B.访问局部性(locality of reference)满足进程要求. C.进程倾向于占用I/O. D.使用基于最短剩余时间(shortest ...

  2. Java系列学习(十一)-内部类

    1.内部类 (1)把类定义在另一个类的内部,该类就称为内部类 (2)内部类的访问规则 A:内部类可以直接访问外部类的成员,包括私有 B:外部类要想访问内部类的成员,必须创建对象 (3)内部类的分类 A ...

  3. jQuery :even

    此选择器匹配所有索引值为偶数的元素,从0开始计数. jQuery1.0版本添加. 语法结构: jQuery( ":even" ) 代码实例: <!doctype html&g ...

  4. 移动web——bootstrap模板

    基本概念 1.bootstrap就是在媒体查询技术出现以后才开始出现的 2.此技术使响应式开发变得十分轻松,最大特点就是栅格系统(什么设备上如何显示)以及响应式工具(是否可见) 基本模板 <!D ...

  5. html5——伸缩布局

    基本概念 1.主轴:Flex容器的主轴主要用来配置Flex项目,默认是水平方向 2.侧轴:与主轴垂直的轴称作侧轴,默认是垂直方向的 3.方向:默认主轴从左向右,侧轴默认从上到下 4.主轴和侧轴并不是固 ...

  6. [Windows Server 2003] 安装IIS6.0及FTP

    ★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频.★ 本节我们将带领大家:安装IIS6. ...

  7. DECLARE_MESSAGE_MAP( )

    DECLARE_MESSAGE_MAP( ) 说明: 你的程序中的每一个CCmdTarget的派生类都可以提供一个消息映射以处理消息.在你的类声明的末尾使用DECLARE_MESSAGE_MAP宏.然 ...

  8. SpringMVC注解配置处理器映射器和处理器适配器

    一.springmvc.xml中配置方式 <!--注解映射器 --> <bean class="org.springframework.web.servlet.mvc.me ...

  9. Sping装配之——自动装配

    Sping从两个角度来实现自动化装配: 组件扫描(component scaning):spring会自动发现应用上下文中所创建的bean; 自动装配(autowiring):spring自动满足be ...

  10. Math.floor() 与 parseInt()

    parseInt()与Math.floor()都能实现数字的向下取整,但是两者存在根本上的差异,1.Math.floor()用于一个数的向下取整,不能解析字符串 <script type=&qu ...