[POJ1226]Substrings(后缀数组)
给定 n 个字符串,求出现或反转后出现在每个字符串中的最长子串。
算法分析:
这题不同的地方在于要判断是否在反转后的字符串中出现。其实这并没有加大题目的难度。
只需要先将每个字符串都反过来写一遍,中间用一个互不相同的且没有出现在字符串中的字符隔开,
再将 n 个字符串全部连起来,中间也是用一个互不相同的且没有出现在字符串中的字符隔开,求后缀数组。
然后二分答案,再将后缀分组。
判断的时候,要看是否有一组后缀在每个原来的字符串或反转后的字符串中出现。
这个做法的时间复杂度为 O(nlogn)。
——代码
#include <cstdio>
#include <cstring>
#include <iostream>
#define N 21001 int len, n, m, max_num, T;
int buc[N], x[N], y[N], sa[N], rank[N], height[N], belong[N], s[N];
char a[N];
bool f[]; inline void build_sa()
{
int i, k, p;
for(i = ; i < m; i++) buc[i] = ;
for(i = ; i < len; i++) buc[x[i] = s[i]]++;
for(i = ; i < m; i++) buc[i] += buc[i - ];
for(i = len - ; i >= ; i--) sa[--buc[x[i]]] = i;
for(k = ; k <= len; k <<= )
{
p = ;
for(i = len - ; i >= len - k; i--) y[p++] = i;
for(i = ; i < len; i++) if(sa[i] >= k) y[p++] = sa[i] - k;
for(i = ; i < m; i++) buc[i] = ;
for(i = ; i < len; i++) buc[x[y[i]]]++;
for(i = ; i < m; i++) buc[i] += buc[i - ];
for(i = len - ; i >= ; i--) sa[--buc[x[y[i]]]] = y[i];
std::swap(x, y);
p = , x[sa[]] = ;
for(i = ; i < len; i++)
x[sa[i]] = y[sa[i - ]] == y[sa[i]] && y[sa[i - ] + k] == y[sa[i] + k] ? p - : p++;
if(p >= len) break;
m = p;
}
} inline void build_height()
{
int i, j, k = ;
for(i = ; i < len; i++) rank[sa[i]] = i;
for(i = ; i < len; i++)
{
if(!rank[i]) continue;
if(k) k--;
j = sa[rank[i] - ];
while(s[i + k] == s[j + k] && i + k < len && j + k < len) k++;
height[rank[i]] = k;
}
} inline bool check(int k)
{
int i, cnt = ;
memset(f, , sizeof(f));
f[belong[sa[]]] = ;
for(i = ; i < len; i++)
if(height[i] >= k && !f[belong[sa[i]]])
{
cnt++;
f[belong[sa[i]]] = ;
if(cnt == n) return ;
}
else if(height[i] < k)
{
cnt = ;
memset(f, , sizeof(f));
f[belong[sa[i]]] = ;
}
return ;
} inline int solve()
{
int l = , r = len, ans = , mid;
while(l <= r)
{
mid = (l + r) >> ;
if(check(mid)) ans = mid, l = mid + ;
else r = mid - ;
}
return ans;
} int main()
{
int i, j, l;
scanf("%d", &T);
while(T--)
{
len = ;
m = ;
scanf("%d", &n);
for(i = ; i < n; i++)
{
scanf("%s", a);
l = strlen(a);
for(j = ; j < l; j++) belong[len] = i, s[len++] = a[j];
belong[len] = i;
s[len++] = + (i << );
for(j = l - ; j >= ; j--) belong[len] = i, s[len++] = a[j];
belong[len] = i;
s[len++] = + (i << | );
}
len--;
build_sa();
build_height();
if(n == )
{
printf("%d\n", l);
continue;
}
printf("%d\n", solve());
}
return ;
}
[POJ1226]Substrings(后缀数组)的更多相关文章
- POJ1226 Substrings ——后缀数组 or 暴力+strstr()函数 最长公共子串
题目链接:https://vjudge.net/problem/POJ-1226 Substrings Time Limit: 1000MS Memory Limit: 10000K Total ...
- POJ1226:Substrings(后缀数组)
Description You are given a number of case-sensitive strings of alphabetic characters, find the larg ...
- UVALive - 6869 Repeated Substrings 后缀数组
题目链接: http://acm.hust.edu.cn/vjudge/problem/113725 Repeated Substrings Time Limit: 3000MS 样例 sample ...
- POJ3415 Common Substrings —— 后缀数组 + 单调栈 公共子串个数
题目链接:https://vjudge.net/problem/POJ-3415 Common Substrings Time Limit: 5000MS Memory Limit: 65536K ...
- SPOJ - SUBST1 New Distinct Substrings —— 后缀数组 单个字符串的子串个数
题目链接:https://vjudge.net/problem/SPOJ-SUBST1 SUBST1 - New Distinct Substrings #suffix-array-8 Given a ...
- SPOJ- Distinct Substrings(后缀数组&后缀自动机)
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- SPOJ - DISUBSTR Distinct Substrings (后缀数组)
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- POJ 3415 Common Substrings 后缀数组+并查集
后缀数组,看到网上很多题解都是单调栈,这里提供一个不是单调栈的做法, 首先将两个串 连接起来求height 求完之后按height值从大往小合并. height值代表的是 sa[i]和sa[i ...
- SPOJ DISUBSTR Distinct Substrings 后缀数组
题意:统计母串中包含多少不同的子串 然后这是09年论文<后缀数组——处理字符串的有力工具>中有介绍 公式如下: 原理就是加上新的,减去重的,这题是因为打多校才补的,只能说我是个垃圾 #in ...
- ●SPOJ 8222 NSUBSTR - Substrings(后缀数组)
题链: http://www.spoj.com/problems/NSUBSTR/ 题解: 同届红太阳 --WSY给出的后缀数组解法!!! 首先用倍增算法求出 sa[i],rak[i],hei[i]然 ...
随机推荐
- JSP页面的跳转及传值
1.response.sendRedirect("跳转到页面的URL"); 该方法通过修改HTTP协议的HEADER部分,对浏览器下达重定向指令的,使浏览器显示重定向网页的内容. ...
- 删除".SVN"文件夹方法(转载)
转自:http://www.cnblogs.com/lr-ting/archive/2012/09/03/2666271.html 一.在linux下 删除这些目录是很简单的,命令如下 find . ...
- HIT1917Peaceful Commission(2-SAT)
Peaceful Commission Source : POI 2001 Time limit : 10 sec Memory limit : 32 M Submitted : 2112 ...
- skiing 暴力搜索 + 动态规划
我的代码上去就是 直接纯粹的 暴力 . 居然没有超时 200ms 可能数据比较小 一会在优化 #include<stdio.h> #include<string.h ...
- 【转】linux下passwd命令设置修改用户密码
1.passwd 简单说明: 我们已经学会如何添加用户了,所以我们还要学习设置或修改用户的密码:passwd命令的用法也很多,我们只选如下的几个参数加以说明:想了解更多,请参考man passwd或p ...
- SQL Server之纵表与横表互转
1,纵表转横表 纵表结构 Table_A: 转换后的结构: 纵表转横表的SQL示例: SELECT Name , SUM(CASE WHEN Course = N'语文' THEN G ...
- Scala-基础-数据类型
import junit.framework.TestCase import org.junit.Test import scala.runtime.RichByte //数据类型 class Dem ...
- Android ScrollView里嵌套RecyclerView时,在RecyclerView上滑动时出现卡顿(冲突)的现象
最近在项目中遇到一个现象,一个界面有一个RecyclerView(GridView型的),外面套了一层ScrollView,通过ScrollView上下滚动,但是在滑动的时候如果是在RecyclerV ...
- JS——i++与++i
先赋值后自增: var i = 0; var n1 = i++; alert(i);//返回1 alert(n1);//返回0 先自增后赋值: var i = 0; var n1 = ++i; ale ...
- postgresql用sql语句查询表结构
用到的postgresql系统表 关于postgresql系统表,可以参考PostgreSQL 8.1 中文文档-系统表. pg_class 记录了数据库中的表,索引,序列,视图("关系&q ...