[cogs731] [网络流24题#6] 最长递增子序列 [网络流,最大流]
【转hzwer】第一问是LIS,动态规划求解,第二问和第三问用网络最大流解决。首先动态规划求出F[i],表示以第i位为开头的最长上升序列的长度,求出最长上升序列长度K。1、把序列每位i拆成两个点<i.a>和<i.b>,从<i.a>到<i.b>连接一条容量为1的有向边。2、建立附加源S和汇T,如果序列第i位有F[i]=K,从S到<i.a>连接一条容量为1的有向边。3、如果F[i]=1,从<i.b>到T连接一条容量为1的有向边。4、如果j>i且A[i] < A[j]且F[j]+1=F[i],从<i.b>到<j.a>连接一条容量1的有向边。求网络最大流,就是第二问的结果。把边(<1.a>,<1.b>)(<N.a>,<N.b>)(S,<1.a>)(<N.b>,T)这四条边的容量修改为无穷大,再求一次网络最大流,就是第三问结果。利用动规求解网络流问题。
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <vector> using namespace std; #define Debug template<const int _n,const int _m>
struct Edge
{
struct Edge_base { int to,next,w; }e[_m]; int cnt,p[_n];
Edge() { clear(); }
void insert(const int x,const int y,const int z)
{ e[++cnt].to=y; e[cnt].next=p[x]; e[cnt].w=z; p[x]=cnt; return ; }
int start(const int x) { return p[x]; }
void clear() { cnt=,memset(p,,sizeof(p)); }
Edge_base& operator[](const int x) { return e[x]; }
}; Edge<,> e;
int Ans=,tAns;
int n,a[],cur[],level[],SSS,TTT;
int f[]; bool Bfs(const int S)
{
int i,t;
queue<int> Q;
memset(level,,sizeof(level));
level[S]=;
Q.push(S);
while(!Q.empty())
{
t=Q.front(),Q.pop();
for(i=e.start(t);i;i=e[i].next)
{
if(!level[e[i].to] && e[i].w)
{
level[e[i].to]=level[t]+;
Q.push(e[i].to);
}
}
}
return level[TTT];
} int Dfs(const int S,const int bk)
{
if(S==TTT)return bk;
int rest=bk;
for(int &i=cur[S];i;i=e[i].next)
{
if(level[e[i].to]==level[S]+ && e[i].w)
{
int flow=Dfs(e[i].to,min(rest,e[i].w));
e[i].w-=flow;
e[i^].w+=flow;
if((rest-=flow)<=)break;
}
}
if(rest==bk)level[S]=;
return bk-rest;
} int Dinic()
{
int flow=;
while(Bfs(SSS))
{
memcpy(cur,e.p,sizeof(cur));
flow+=Dfs(SSS,0x3f3f3f3f);
}
return flow;
} void Calc1()
{
int i,j; for(i=;i<=n;++i)
{
if(f[i]==)e.insert(SSS,i,),e.insert(i,SSS,);
if(f[i]==Ans)e.insert(i+n,TTT,),e.insert(TTT,i+n,);
e.insert(i,i+n,);
e.insert(i+n,i,);
}
for(i=;i<=n;++i)
{
for(j=i+;j<=n;++j)
{
if(a[j]>=a[i] && f[j]==f[i]+)
e.insert(i+n,j,),e.insert(j,i+n,);
}
}
printf("%d\n",tAns=Dinic());
} void Calc2()
{
int i,j;
e.clear();
for(i=;i<=n;++i)
{
int v=;
if(i== || i==n)v=0x3f3f3f3f;
if(f[i]==)e.insert(SSS,i,v),e.insert(i,SSS,);
if(f[i]==Ans)e.insert(i+n,TTT,v),e.insert(TTT,i+n,);
e.insert(i,i+n,v);
e.insert(i+n,i,);
}
for(i=;i<=n;++i)
{
for(j=i+;j<=n;++j)
{
if(a[j]>=a[i] && f[j]==f[i]+)
e.insert(i+n,j,),e.insert(j,i+n,);
}
}
int temp=Dinic();
if(temp>=0x3f3f3f3f)temp=tAns;
printf("%d\n",temp);
return ;
} int main()
{
freopen("alis.in","r",stdin);
freopen("alis.out","w",stdout); int i,j; scanf("%d",&n);
for(i=;i<=n;++i)scanf("%d",&a[i]); for(i=;i<=n;++i)
{
f[i]=;
for(j=;j<i;++j)
if(a[j]<=a[i])f[i]=max(f[i],f[j]+);
Ans=max(Ans,f[i]);
} printf("%d\n",Ans); SSS=n<<|,TTT=SSS+;
Calc1();
Calc2(); return ;
}
[cogs731] [网络流24题#6] 最长递增子序列 [网络流,最大流]的更多相关文章
- Libre 6005 「网络流 24 题」最长递增子序列 / Luogu 2766 最长递增子序列问题(网络流,最大流)
Libre 6005 「网络流 24 题」最长递增子序列 / Luogu 2766 最长递增子序列问题(网络流,最大流) Description 问题描述: 给定正整数序列x1,...,xn . (1 ...
- 【刷题】LOJ 6005 「网络流 24 题」最长递增子序列
题目描述 给定正整数序列 \(x_1 \sim x_n\) ,以下递增子序列均为非严格递增. 计算其最长递增子序列的长度 \(s\) . 计算从给定的序列中最多可取出多少个长度为 \(s\) 的递增子 ...
- 【PowerOJ1741&网络流24题】最长递增子序列问题(最大流)
题意: 思路: [问题分析] 第一问时LIS,动态规划求解,第二问和第三问用网络最大流解决. [建模方法] 首先动态规划求出F[i],表示以第i位为开头的最长上升序列的长度,求出最长上升序列长度K. ...
- 【网络流24题】最长k可重线段集(费用流)
[网络流24题]最长k可重线段集(费用流) 题面 Cogs的数据有问题 Loj 洛谷 题解 这道题和最长k可重区间集没有区别 只不过费用额外计算一下 但是,还是有一点要注意的地方 这里可以是一条垂直的 ...
- 【网络流24题】最长k可重区间集(费用流)
[网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...
- LibreOJ #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 ...
- 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题
题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...
- loj #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...
- 【网络流24题】最长k可重区间集问题(费用流)
[网络流24题]最长k可重区间集问题 [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a>< ...
随机推荐
- Vue.js中学习使用Vuex详解
在SPA单页面组件的开发中 Vue的vuex和React的Redux 都统称为同一状态管理,个人的理解是全局状态管理更合适:简单的理解就是你在state中定义了一个数据之后,你可以在所在项目中的任何一 ...
- 《Typecript 入门教程》 2、访问控制符:public、private、protected、readonly
声明类的属性和方法时可以设置使用访问控制符,访问控制符设置类的属性和方法能不能在类的外部被访问 1. 默认为 public,使用public定义的属性和方法在类的内部和外部都可以访问 2. priva ...
- JSP 向 JavaScript 中传递数组
采用隐藏标签的方式: // JSP: <% while(rs.next()) { %> <in ...
- Java内存泄漏及对象引用的4种类型
转自: http://www.cnblogs.com/qq78292959/archive/2011/07/25/2116123.html 总结: 引用分类: 强引用,弱引用,软引用,虚引用.虚引用必 ...
- Linux下安装Wine 运行、卸载 windows程序
资料 首页 https://www.winehq.org/ 安装 https://www.winehq.org/download/ 教程 https://www.winehq.org/document ...
- 记一次Oracle冷备恢复的过程
一.故障来临 某日中午,市电意外中断,机房UPS电源由于负载过重而未接管供电,所有服务器全部重启...... 待所有服务器重启后,正在逐一检查设备和业务运行情况时,意外发生了.一台年代久远的HP PC ...
- [ Luogu Contest 10364 ] TG
\(\\\) \(\#A\) 小凯的数字 给出两个整数\(L,R\),从\(L\)到\(R\)按顺序写下来,求生成整数对\(9\)取模后的答案. 例如\(L=8,R=12\),生成的数字是\(8910 ...
- 关于Adaper的相关用法
使用BaseAdapter的话需要重载四个方法: getCount getItem getItemId getView getView是用来刷新它所在的ListView的.在每一次item从屏幕外滑进 ...
- win32动态库
先讲一个基本的动态库,功能为自定义一个动态库,里面有一个函数MyMessage实现弹出MessageBox. 1. 先在头文件中定义: #ifdef __cplusplus #define EXPOR ...
- ES6学习之箭头函数
ES6学习笔记--箭头函数 箭头函数一直在用,最近突然想到重新看一下箭头函数的用法,所以这里做一些总结. 箭头函数长这个样子: let fn = a => a++; // fn 是函数名, a= ...