poj3101--Astronomy(分数的最小公倍数)
题目链接: id=3101">点击打开链接
题目大意:有n个行星,给出每个行星的旋转的周期。问最少多少时间后n个行星会在一条直线上,初始点在一起,不存在全部的行星都有同一个周期
如果A行星的周期是t1。B行星的周期是t2(t2>t1),要在一条直线上,一定会执行的相差半个周期的倍数,时间(t/t2 - t/t1) % (1/2) = 0。也就是t*(t1-t2)/(t1*t2)%(1/2) = 0,要是时间最小。所以也就是差出一个半周期。也就是t = (t2-t1)/(t2*t1*2)这个t也就是A。B执行到一条直线上的最小时间,我们能够求出其它全部行星和A行星的在一条直线的最小时间,然后求出这个时间的最小公倍数。也就是整体的时间。
分数的最小公倍数 = (分子的最小公倍数)/(分母的最大公约数)
分数的最大公约数 = (分子的最大公约数)/ (分母的最小公倍数)
import java.util.*;
import java.math.* ;
public class Main {
public static void main(String[] args) {
Scanner cin = new Scanner(System.in) ;
int n , i , cnt = 0 ;
int a[] = new int[1010];
int b[] = new int[1010] ;
BigInteger x , y , temp , u , v ;
n = cin.nextInt() ;
for(i = 0 ; i < n ; i++)
a[i] = cin.nextInt() ;
Arrays.sort(a,0,n) ;
b[cnt++] = a[0] ;
for(i = 1 ; i < n ; i++)
if( a[i] != b[cnt-1] )
b[cnt++] = a[i] ;
x = BigInteger.valueOf(b[1]*b[0]) ;
y = BigInteger.valueOf((b[1]-b[0])*2) ;
temp = x.gcd(y) ;
x = x.divide(temp) ;
y = y.divide(temp) ;
for(i = 2 ; i < cnt ; i++) {
u = BigInteger.valueOf(b[i]*b[0]) ;
v = BigInteger.valueOf((b[i]-b[0])*2) ;
temp = u.gcd(v) ;
u = u.divide(temp) ; v = v.divide(temp) ;
temp = x.gcd(u) ;
x = x.multiply(u).divide(temp) ;
y = y.gcd(v) ;
}
System.out.println(x + " " + y) ;
}
}
poj3101--Astronomy(分数的最小公倍数)的更多相关文章
- poj 3101 Astronomy(分数的最小公倍数)
http://poj.org/problem? id=3101 大致题意:求n个运动周期不全然同样的天体在一条直线上的周期. 这题我是看解题报告写的,没想到选用參照物,用到了物理中的角速度什么的. 由 ...
- poj 3101 Astronomy (java 分数的最小公倍数 gcd)
题目链接 要用大数,看了别人的博客,用java写的. 题意:求n个运动周期不完全相同的天体在一条直线上的周期. 分析:两个星球周期为a,b.则相差半周的长度为a*b/(2*abs(a-b)),对于n个 ...
- hdu 1713求分数的最小公倍数
题意中的圈数和天数说反了 #include<stdio.h> __int64 gcd(__int64 a,__int64 b) {/* 比如4/3 3/5 通分20/15 9/15 所以这 ...
- poj 3101Astronomy(圆周追击+分数最小公倍数)
/* 本题属于圆周追击问题: 假设已知两个圆周运动的物体的周期分别是a ,b, 设每隔时间t就会在同一条直线上 在同一条直线上的条件是 角度之差为 PI ! 那么就有方程 (2PI/a - 2PI/b ...
- poj 3101 Astronomy
2个星球周期为a,b.则相差半周的长度为a*b/(2*abs(a-b)),对于n个只需求这n个 分数的最小公倍数即可! 公式: 分数的最小公倍数 = 分子的最小公倍数/分母的最大公约数 由于涉及到大数 ...
- HDU 1713 相遇周期 (最小公倍数)
题意:... 析:求周期就是这两个分数的最小公倍数,可以先通分,再计算分子的最小倍数. 代码如下: #pragma comment(linker, "/STACK:1024000000,10 ...
- acm数学(转)
这个东西先放在这吧.做过的以后会用#号标示出来 1.burnside定理,polya计数法 这个大家可以看brudildi的<组合数学>,那本书的这一章写的很详细也很容易理解.最好能 ...
- [转] POJ数学问题
转自:http://blog.sina.com.cn/s/blog_6635898a0100magq.html 1.burnside定理,polya计数法 这个大家可以看brudildi的<组合 ...
- ACM数学
1.burnside定理,polya计数法 这个专题我单独写了个小结,大家可以简单参考一下:polya 计数法,burnside定理小结 2.置换,置换的运算 置换的概念还是比较好理解的,< ...
随机推荐
- 图像算法研究---Adaboost算法具体解释
本篇文章先介绍了提升放法和AdaBoost算法.已经了解的可以直接跳过.后面给出了AdaBoost算法的两个样例.附有详细计算过程. 1.提升方法(来源于统计学习方法) 提升方法是一种经常使用的统计学 ...
- DOMContentLoaded事件<zz>
今天查看百度空间源代码,发现多了个util.js文件,打开看看.里面里面定义了addDOMLoadEvent.这是干什么用的? 仔细查看代码,发现在Mozilla添加了DOMContentLoaded ...
- android TextView加边框
为TextView加边框.须要在drawable建xml文件,里面设置shape来设置文本框的特殊效果. <?xml version="1.0" encoding=" ...
- UVA - 11021 - Tribles 递推概率
GRAVITATION, n.“The tendency of all bodies to approach one another with a strengthproportion to the ...
- 错误 'Cannot run program "/home/uv/IDE/adt/sdk/platform-tools/adb": error=2, No such file or directory
转 Linux下Android SDK中adb找不到的解决方案 2013年04月22日 20:41:48 阅读数:7621 在Linux平台下配置Android SDK开发环境过程中,Eclipse会 ...
- Flask Cookie和Session
1.1.概念 cookie:在网站中,http请求是无状态的.也就是说即使第一次和服务器连接后并且登录成功后,第二次请求服务器依然不能知道当前请求是哪个用户.cookie的出现就是为了解决这个问题,第 ...
- IIS7.0与AP.NET
IIS7在请求的监听和分发机制上进行了革新性的改进,主要体现在对于Windows进行激活服务(Windows Process Activation Service ,WAS)的引入,将原来的W3SVC ...
- Sqlite基本命令集合(linux/fedora/ubuntu)
注:fedora自带sqlite3,无需安装,直接输入命令sqlite3即可. ------------Ubuntu在命令行输入sqlite3,确认没有安装在进行--- 1.安装sqlite3 ubu ...
- 使用JS&jQuery改善用户体验
第一章 JavaScript基本语法 一.运算符 运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&= ...
- 有关DevExpress 安装后vs工具箱不显示图标的错误
在https://www.devexpress.com/Support/Center/Question/Details/T214296/missing-icons-from-toolbox找到解决方法 ...