Description

有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为
能同时整除 i 和 j 的所有自然数之和。给定 a , 计算数表中不大于 a 的数之和。

Input

输入包含多组数据。
输入的第一行一个整数Q表示测试点内的数据组数
接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据。
1 < =N.m < =10^5  , 1 < =Q < =2×10^4

Output

对每组数据,输出一行一个整数,表示答案模2^31的值。

Sample Input

2
4 4 3
10 10 5

Sample Output

20
148

解题思路:

这道题就是让我们求${\sum_{i=1}^{N}}{\sum_{j=1}^{M}}{\sigma(gcd(i,j))}({\sigma(gcd(i,j))}<=a)$
a比较让人恶心,考虑将${\sigma(gcd(i,j))}$按次序加入答案,直接统计,就是一种离线的做法。
那么就不需要考虑a了,答案就变成了(设n<=m)
${\sum_{i=1}^{n}}{\sum_{j=1}^{m}}{\sigma(gcd(i,j))}$
$={\sum_{d=1}^{n}}{\sigma(d)}{\sum_{d|i}}{n}{\sum_{d|j}^{m}}[gcd(i,j)==d]$
$={\sum_{d=1}^{n}}{\sigma(d)}{\sum_{i=1}^{\left \lfloor {\frac{n}{d}} \right \rfloor}}{\sum_{j=1}^{\left \lfloor {\frac{n}{d}} \right \rfloor}}{[gcd(i,j)==1]}$
$={\sum_{d=1}^{n}}{\sigma(d)}{\sum_{k=1}^{\left \lfloor {\frac{n}{d}} \right \rfloor}}{\mu(k)}{\left \lfloor {\frac{n}{dk}} \right \rfloor}{\left \lfloor {\frac{m}{dk}} \right \rfloor}$
设T=dk
$={\sum_{T=1}^{n}}{\sum_{d|T}}{\sigma(d)}{\mu(\frac{T}{d})}{\left \lfloor {\frac{n}{T}} \right \rfloor}{\left \lfloor \frac{m}{T} \right \rfloor}$
按顺序加入${\sigma(d)}$就好了
由于具有循环性质,在倍数位置加上就好了
取模卡我好长时间,没想到是这种方法。
代码:
 #include<cstdio>
#include<cstring>
#include<algorithm>
typedef long long lnt;
const int N=;
struct int_2{int a,b;bool friend operator < (int_2 x,int_2 y){if(x.a!=y.a)return x.a<y.a;return x.b<y.b;}}F[N];
int prime[N];
int miu[N];
bool vis[N];
int cnt;
int line[N];
struct qust{
int n,m,a;
int no;
int ans;
}q[N];
int lowbit(int x)
{
return x&(-x);
}
void update(int pos,int v)
{
while(pos<N)
{
line[pos]+=v;
pos+=lowbit(pos);
}
return ;
}
int query(int pos)
{
int ans=;
while(pos)
{
ans+=line[pos];
pos-=lowbit(pos);
}
return ans;
}
void gtp(void)
{
miu[]=;
for(int i=;i<N;i++)
{
if(!vis[i])
{
prime[++cnt]=i;
miu[i]=-;
}
for(int j=;j<=cnt&&prime[j]*i<N;j++)
{
int x=i*prime[j];
vis[x]=true;
if(i%prime[j]==)
{
miu[x]=;
break;
}
miu[x]=-miu[i];
}
}
for(int i=;i<N;i++)
{
for(int j=i;j<N;j+=i)
F[j].a+=i;
F[i].b=i;
}
return ;
}
bool cmp(qust x,qust y)
{
return x.a<y.a;
}
bool cmq(qust x,qust y)
{
return x.no<y.no;
}
int main()
{
gtp();
int T;
scanf("%d",&T);
for(int i=;i<=T;i++)
{
scanf("%d%d%d",&q[i].n,&q[i].m,&q[i].a);
q[i].no=i;
}
std::sort(q+,q+T+,cmp);
std::sort(F+,F+N);
for(int i=,j=;i<=T;i++)
{
for(;j<N&&F[j].a<=q[i].a;j++)
{
for(int k=F[j].b;k<N;k+=F[j].b)
update(k,F[j].a*miu[k/F[j].b]);
}
int n=q[i].n,m=q[i].m;
if(n>m)
std::swap(n,m);
for(int u=,v;u<=n;u=v+)
{
v=std::min(n/(n/u),m/(m/u));
q[i].ans+=(query(v)-query(u-))*(n/u)*(m/u);
}
}
std::sort(q+,q+T+,cmq);
for(int i=;i<=T;i++)
printf("%d\n",q[i].ans&(0x7fffffff));
return ;
}

BZOJ3529: [Sdoi2014]数表(莫比乌斯反演,离线)的更多相关文章

  1. 【bzoj3529】[Sdoi2014]数表 莫比乌斯反演+离线+树状数组

    题目描述 有一张n×m的数表,其第i行第j列(1 <= i <= n ,1 <= j <= m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...

  2. bzoj3529: [Sdoi2014]数表 莫比乌斯反演

    题意:求\(\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))(gcd(i,j)<=a),f(x)是x的因子和函数\) 先考虑没有限制的情况,考虑枚举gcd为x,那么有\(\ ...

  3. BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)

    题意 题目链接 Sol 首先不考虑\(a\)的限制 我们要求的是 \[\sum_{i = 1}^n \sum_{j = 1}^m \sigma(gcd(i, j))\] 用常规的套路可以化到这个形式 ...

  4. BZOJ3529: [Sdoi2014]数表 莫比乌斯反演_树状数组

    Code: #include <cstdio> #include <algorithm> #include <cstring> #define ll long lo ...

  5. bzoj [SDOI2014]数表 莫比乌斯反演 BIT

    bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...

  6. 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组

    [BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...

  7. BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)

    题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...

  8. BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2321  Solved: 1187[Submit][Status ...

  9. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

随机推荐

  1. iPad popView封装

    仿照UITableView的UITableViewDataSource 协义 1.代理.让代理帮我们类完毕一些方法 2.完毕当前类不能完毕的事情还有传值等功能 实现方法 // 1. 声明一个协议 // ...

  2. 2015北京网络赛 D-The Celebration of Rabbits 动归+FWT

    2015北京网络赛 D-The Celebration of Rabbits 题意: 给定四个正整数n, m, L, R (1≤n,m,L,R≤1000). 设a为一个长度为2n+1的序列. 设f(x ...

  3. toggleClass slideToggle

    $("#wrapper").toggleClass("toggled"); $("p").slideToggle(1000); demo: ...

  4. SQLHelper--java类

    package richard; import java.beans.Statement; import java.sql.Connection; import java.sql.DriverMana ...

  5. 实现人脸识别性别之路---matplotlib之注释

    一.准备数据 利用np.linspace()函数得到一定范围内的数据集 利用2*x+1的公式求出y 二.创建窗口 三.根据具有规律的数据画图 四.调整坐标轴 1.将原本的坐标轴的上轴和右轴去掉,使用基 ...

  6. 【Uva 1625】Color Length

    [Link]: [Description] 给你两个序列,都由大写字母组成; 每次,把两个序列中的一个的开头字母加在字符串的尾端,然后在那个序列中删掉那个开头字母; 最后得到一个字符串; 这个字符串显 ...

  7. Volitale

    例1 volatile提醒编译器它后面所定义的变量随时都有可能改变.因此编译后的程序每次须要存储或读取这个变量的时候,都会直接从变量地址中读取数据. 假设没有volatile关键字.则编译器可能优化读 ...

  8. EF搭建数据库

    http://blog.csdn.net/mss359681091/article/details/52135867http://blog.csdn.net/x_craft/article/detai ...

  9. LuoguP1251 餐巾计划问题(费用流)

    题目描述 一个餐厅在相继的 NN 天里,每天需用的餐巾数不尽相同.假设第 ii 天需要 r_iri​块餐巾( i=1,2,...,N).餐厅可以购买新的餐巾,每块餐巾的费用为 pp 分;或者把旧餐巾送 ...

  10. dhclient---获取动态IP

    dhclient命令使用动态主机配置协议动态的配置网络接口的网络参数. 语法 dhclient(选项)(参数) 选项 0:指定dhcp客户端监听的端口号: -d:总是以前台方式运行程序: -q:安静模 ...