原文地址:http://www.jianshu.com/p/9bf9e2add795

AdaBoost

问题描述



程序实现

# coding:utf-8

import math
import numpy as np
import matplotlib.pyplot as plt def ReadData(dataFile): with open(dataFile, 'r') as f:
lines = f.readlines()
data_list = []
for line in lines:
line = line.strip().split()
data_list.append([float(l) for l in line])
dataArray = np.array(data_list)
return dataArray def sign(n): if(n>=0):
return 1
else:
return -1 def GetSortedArray(dataArray,i):
# 根据dataArray第i列的值对dataArray进行从小到大的排序
data_list=dataArray.tolist()
sorted_data_list=sorted(data_list,key=lambda x:x[i],reverse=False)
sortedDataArray=np.array(sorted_data_list)
return sortedDataArray def GetUZeroOneError(pred,dataY,u):
return np.sum(u*np.not_equal(pred,dataY))/np.sum(u) def GetZeroOneError(pred,dataY):
return np.sum(np.not_equal(pred,dataY))/dataY.shape[0] def decision_stump(dataArray,u): num_data=dataArray.shape[0]
num_dim=dataArray.shape[1]-1
min_e=np.inf
min_s = np.inf
min_d=np.inf
min_theta = np.inf
min_pred = np.zeros((num_data,))
for d in range(num_dim):
sortedDataArray=GetSortedArray(dataArray,d) # 确保有效theta
d_min_e=np.inf
d_min_s = np.inf
d_min_theta = np.inf
d_min_pred = np.zeros((num_data,))
for s in [-1.0,1.0]:
for i in range(num_data):
if(i==0):
theta=-np.inf
pred=s*np.ones((num_data,))
else:
if sortedDataArray[i-1,d]==sortedDataArray[i,d]:
continue
theta=(sortedDataArray[i-1,d]+sortedDataArray[i,d])/2
pred=np.zeros((num_data,))
for n in range(num_data):
pred[n]=s*sign(dataArray[n,d]-theta)
d_now_e=GetUZeroOneError(pred,dataArray[:,-1],u)
if(d_now_e<d_min_e):
d_min_e=d_now_e
d_min_s=s
d_min_theta=theta
d_min_pred=pred
if(d_min_e<min_e):
min_e=d_min_e
min_s=d_min_s
min_d=d
min_theta=d_min_theta
min_pred=d_min_pred
return min_s,min_d,min_theta,min_pred,min_e def Pred(paraList,dataX):
# paraList=[s,d,theta]
num_data=dataX.shape[0]
pred=np.zeros((num_data,))
for i in range(num_data):
pred[i]=paraList[0]*sign(dataX[i,paraList[1]]-paraList[2])
return pred def plot_line_chart(X=np.arange(0,300,1).tolist(),Y=np.arange(0,300,1).tolist(),nameX="t",nameY="Ein(gt)",saveName="12.png"): plt.figure(figsize=(30,12))
plt.plot(X,Y,'b')
plt.plot(X,Y,'ro')
plt.xlim((X[0]-1,X[-1]+1))
for (x,y) in zip(X,Y):
if(x%10==0):
plt.text(x+0.1,y,str(round(y,4)))
plt.xlabel(nameX)
plt.ylabel(nameY)
plt.title(nameY+" versus "+nameX)
plt.savefig(saveName)
return if __name__=="__main__": dataArray=ReadData("hw2_adaboost_train.dat")
dataY=dataArray[:,-1]
dataX=dataArray[:,:-1]
num_data=dataArray.shape[0]
u=np.full(shape=(num_data,),fill_value=1/num_data)
ein_g_list=[]
alpha_list=[]
g_list=[]
ein_G_list=[]
u_sum_list=[]
epi_list=[]
min_pred_list=[] # adaboost
for t in range(300):
u_sum_list.append(np.sum(u))
min_s,min_d,min_theta,min_pred,epi=decision_stump(dataArray,u)
g_list.append([min_s,min_d,min_theta])
min_pred_list.append(min_pred)
ein_g=GetZeroOneError(min_pred,dataY)
ein_g_list.append(ein_g)
epi_list.append(epi)
para=math.sqrt((1-epi)/epi)
alpha_list.append(math.log(para))
for i in range(num_data):
if min_pred[i]==dataY[i]:
u[i]/=para
else:
u[i]*=para
predG=np.zeros((num_data,))
for ta in range(t):
predG+=alpha_list[ta]*min_pred_list[ta]
for n in range(num_data):
predG[n]=sign(predG[n])
ein_G_list.append(GetZeroOneError(predG,dataY)) # 12
plot_line_chart(Y=ein_g_list)
print("Ein(g1):",ein_g_list[0])
print("alpha1:",alpha_list[0]) # 14
plot_line_chart(Y=ein_G_list,nameY="Ein(Gt)",saveName="14.png")
print("Ein(G):",ein_G_list[-1]) # 15
plot_line_chart(Y=u_sum_list, nameY="Ut", saveName="15.png")
print("U2:",u_sum_list[1])
print("UT:",u_sum_list[-1]) # 16
plot_line_chart(Y=epi_list,nameY="epsilon_t",saveName="16.png")
print("the minimum value of epsilon_t:",min(epi_list)) testArray=ReadData("hw2_adaboost_test.dat")
num_test=testArray.shape[0]
testX=testArray[:,:-1]
testY=testArray[:,-1]
pred_g_list=[]
eout_g_list=[]
eout_G_list=[]
for t in range(300):
pred_g=Pred(g_list[t],testX)
pred_g_list.append(pred_g)
eout_g_list.append(GetZeroOneError(pred_g,testY))
pred_G=np.zeros((num_test,))
for ta in range(t):
pred_G+=alpha_list[ta]*pred_g_list[ta]
sign_ufunc=np.frompyfunc(sign,1,1)
pred_G=sign_ufunc(pred_G)
eout_G_list.append(GetZeroOneError(pred_G,testY)) # 17
plot_line_chart(Y=eout_g_list, nameY="Eout(gt)", saveName="17.png")
print("Eout(g1):",eout_g_list[0]) # 18
plot_line_chart(Y=eout_G_list, nameY="Eout(Gt)", saveName="18.png")
print("Eout(G):",eout_G_list[-1])

运行结果













Kernel Ridge Regression

问题描述

程序实现

# coding:utf-8

import numpy as np
import math def ReadData(dataFile): with open(dataFile, 'r') as f:
lines = f.readlines()
data_list = []
for line in lines:
line = line.strip().split()
data_list.append([1.0]+[float(l) for l in line])
dataArray = np.array(data_list)
return dataArray def sign(n): if(n>=0):
return 1
else:
return -1 def RBFKernel(X1,X2,gamma):
return math.exp(-gamma*np.sum(np.square(X1-X2))) def GetKernelMatrix(trainX,dataX,gamma):
num_train = trainX.shape[0]
num_data = dataX.shape[0]
mat = np.zeros((num_train,num_data))
for i in range(num_train):
if num_train==num_data and np.equal(trainX,dataX).all():
for j in range(i+1):
mat[i][j] = RBFKernel(dataX[i, :], dataX[j, :], gamma)
if(i!=j):
mat[j][i]=mat[i][j]
else:
for j in range(num_data):
mat[i][j]=RBFKernel(trainX[i,:],dataX[j,:],gamma)
return mat def GetZeroOneError(pred,dataY):
return np.sum(np.not_equal(pred,dataY))/dataY.shape[0] def KernelRidgeRegression(trainArray,lamb,gamma):
num_train=trainArray.shape[0]
trainX=trainArray[:,:-1]
trainY=trainArray[:,-1].reshape((num_train,1))
K=GetKernelMatrix(trainX,trainX,gamma)
beta=np.dot(np.linalg.inv(lamb*np.eye(num_train)+K),trainY)
return beta def Predict(trainX,dataX,beta,gamma):
num_data=dataX.shape[0]
pred=np.zeros((num_data,))
K=GetKernelMatrix(trainX,dataX,gamma)
pred=np.dot(K.transpose(),beta).reshape((num_data,))
for n in range(num_data):
pred[n]=sign(pred[n])
return pred if __name__=="__main__":
dataArray=ReadData("hw2_lssvm_all.dat")
trainArray=dataArray[:400,:]
testArray=dataArray[400:,:]
gammaList=[32,2,0.125]
lambdaList=[0.001,1,1000]
ein_list=[]
eout_list=[]
for l in lambdaList:
for g in gammaList:
beta=KernelRidgeRegression(trainArray,l,g)
ein_list.append(GetZeroOneError(Predict(trainArray[:,:-1],trainArray[:,:-1],beta,g),trainArray[:,-1]))
eout_list.append(GetZeroOneError(Predict(trainArray[:,:-1],testArray[:,:-1],beta,g),testArray[:,-1]))
min_ein=min(ein_list)
min_ein_id=ein_list.index(min_ein)
min_eout=min(eout_list)
min_eout_id=eout_list.index(min_eout) # 19
print("the minimum Ein(g):",min_ein,",the corresponding parameter combinations: gamma=",gammaList[min_ein_id%3],",lambda=",lambdaList[min_ein_id//3])
# 20
print("the minimum Eout(g):",min_eout,",the corresponding parameter combinations: gamma=",gammaList[min_eout_id%3],",lambda=",lambdaList[min_eout_id//3])

运行结果

机器学习技法笔记:Homework #6 AdaBoost&Kernel Ridge Regression相关习题的更多相关文章

  1. 机器学习技法笔记(2)-Linear SVM

    从这一节开始学习机器学习技法课程中的SVM, 这一节主要介绍标准形式的SVM: Linear SVM 引入SVM 首先回顾Percentron Learning Algrithm(感知器算法PLA)是 ...

  2. 机器学习技法笔记:06 Support Vector Regression

    Roadmap Kernel Ridge Regression Support Vector Regression Primal Support Vector Regression Dual Summ ...

  3. support vector regression与 kernel ridge regression

    前一篇,我们将SVM与logistic regression联系起来,这一次我们将SVM与ridge regression(之前的linear regression)联系起来. (一)kernel r ...

  4. Kernel ridge regression(KRR)

    作者:桂. 时间:2017-05-23  15:52:51 链接:http://www.cnblogs.com/xingshansi/p/6895710.html 一.理论描述 Kernel ridg ...

  5. 机器学习技法笔记:05 Kernel Logistic Regression

    Roadmap Soft-Margin SVM as Regularized Model SVM versus Logistic Regression SVM for Soft Binary Clas ...

  6. 机器学习技法笔记:03 Kernel Support Vector Machine

    Roadmap Kernel Trick Polynomial Kernel Gaussian Kernel Comparison of Kernels Summary

  7. 机器学习技法笔记:Homework #5 特征变换&Soft-Margin SVM相关习题

    原文地址:https://www.jianshu.com/p/6bf801bdc644 特征变换 问题描述 程序实现 # coding: utf-8 import numpy as np from c ...

  8. 机器学习技法笔记:Homework #8 kNN&RBF&k-Means相关习题

    原文地址:https://www.jianshu.com/p/1db700f866ee 问题描述 程序实现 # kNN_RBFN.py # coding:utf-8 import numpy as n ...

  9. 机器学习技法笔记:Homework #7 Decision Tree&Random Forest相关习题

    原文地址:https://www.jianshu.com/p/7ff6fd6fc99f 问题描述 程序实现 13-15 # coding:utf-8 # decision_tree.py import ...

随机推荐

  1. 使用Github SSH Key来避免Hexo部署时输入账户密码

    博客原文:http://fengyao.me/2016/04/10/use-git-ssh-key-carry-hexo-deploy/ 前言 当hexo使用https方式连接Github时,每次执行 ...

  2. CTF 密码学(一)

    0x00 前言 为了练习python,强迫自己能用Python的题都用python解题还有各种密码 0x01 奇怪的字符串 实验吧题目:信息保密的需求和实际操作自古有之,与之相应的信息加密与解密也是历 ...

  3. Struts1.3——文件上传和下载

    1.Struts文件上传 在Web开发中,会经常涉及到文件的上传和下载,比如在注册账户的时候,我们需要上传自己的头像等. 我们可以利用Struts很方便地实现文件的上传. 1.1 开发步骤 现在,假设 ...

  4. upc组队赛5 Ingenious Lottery Tickets【排序】

    Ingenious Lottery Tickets 题目描述 Your friend Superstitious Stanley is always getting himself into trou ...

  5. VIP视频下载终结器

    youtube-dl: Youtube-dl是谷歌github上的一个开源项目,它是一款轻量级的命令行 下载实用工具,阿刚曾在乐软博客里文章<不仅仅是youtube,youtube-dl在线视频 ...

  6. 在规定的时间内出现动画.html

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  7. python+tushare获取沪深港股通持股明细

    接口:hk_hold 描述:获取沪深港股通持股明细,数据来源港交所. 限量:单次最多提取3800条记录,可循环调取,总量不限制 积分:用户积120积分可调取试用,2000积分可正常使用,单位分钟有流控 ...

  8. css中的居中问题

    前两天写了一篇关于display:table的用法,里面涉及到居中的问题,这两天愈发觉得css中的居中是一个值得关注的问题,现总结如下. 一.垂直居中 (1)inline或者inline-*元素 1. ...

  9. 多线程实现奇偶统计v1 - 暴力版

    #include <stdio.h> #include <stdlib.h> #include <time.h> #include "pthread.h& ...

  10. 在Ubuntu下安装deb包需要使用dpkg命令

    Dpkg 的普通用法: 1.sudo dpkg -i <package.deb> 安装一个 Debian 软件包,如你手动下载的文件. 2.sudo dpkg -c <package ...