POJ 1905 题解(二分+几何)
题面
分析
如图:已知AB=L,弧AB=L(1+nC)" role="presentation" style="position: relative;">AB=L,弧AB=L(1+nC)AB=L,弧AB=L(1+nC),M为AB中点,N为圆上一点,且ON垂直于AB于M,求MN
设半径为R" role="presentation" style="position: relative;">RR,∠AOM=θ" role="presentation" style="position: relative;">∠AOM=θ∠AOM=θ(弧度),MN=x" role="presentation" style="position: relative;">MN=xMN=x
则可列出方程组
{2Rθ=L(1+nc)(1)Rsinθ=L2(2)x=R(1−cosθ)(3)" role="presentation" style="position: relative;">⎧⎩⎨⎪⎪⎪⎪2Rθ=L(1+nc)(1)Rsinθ=L2(2)x=R(1−cosθ)(3){2Rθ=L(1+nc)(1)Rsinθ=L2(2)x=R(1−cosθ)(3)
若求出θ" role="presentation" style="position: relative;">θθ便可以求出x,所以我们从 θ" role="presentation" style="position: relative;">θθ入手,尝试解上面的方程组
由(1)(2)式得 θsinθ=1+nC" role="presentation" style="position: relative;">θsinθ=1+nCθsinθ=1+nC
本人数学不好,求不出上面的方程的解析解(如果有解析解可以在评论中指出)
于是采用二分的方法来近似求根
显然0<θ≤π2" role="presentation" style="position: relative;">0<θ≤π20<θ≤π2
由图知θ" role="presentation" style="position: relative;">θθ越大,1+nC越大" role="presentation" style="position: relative;">1+nC越大1+nC越大
我们二分θ" role="presentation" style="position: relative;">θθ,设二分中点为mid,端点为[L,R]并计算midsinmid" role="presentation" style="position: relative;">midsinmidmidsinmid,若midsinmid>1+nC" role="presentation" style="position: relative;">midsinmid>1+nCmidsinmid>1+nC,则寻找更小的,R=mid.否则寻找更大的,L=mid
还有几个细节:
1.π" role="presentation" style="position: relative;">ππ一定要很精确,否则会WA
2.设定的二分误差要尽量小
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define eps 1e-11
#define pi 3.141592653589793
using namespace std;
double L,n,C,theta,x;
int main(){
while(scanf("%lf %lf %lf",&L,&n,&C)!=EOF){
if(L==n&&n==C&&C==-1) break;
if(n*C==0){
printf("0.000\n");
continue;
}
double l=eps,r=pi/2;//用弧度表示角
while(fabs(l-r)>eps){
double mid=(l+r)/2;
double hu=mid/sin(mid);
if(hu>1+n*C) r=mid;
else l=mid;
}
theta=l;
double R=L/(2*sin(theta));
printf("%.3f\n",R*(1-cos(theta)));
}
}
POJ 1905 题解(二分+几何)的更多相关文章
- D - Expanding Rods POJ - 1905(二分)
D - Expanding Rods POJ - 1905 When a thin rod of length L is heated n degrees, it expands to a new l ...
- POJ 1840 Eqs 二分+map/hash
Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The co ...
- poj 2318 叉积+二分
TOYS Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13262 Accepted: 6412 Description ...
- poj 2049(二分+spfa判负环)
poj 2049(二分+spfa判负环) 给你一堆字符串,若字符串x的后两个字符和y的前两个字符相连,那么x可向y连边.问字符串环的平均最小值是多少.1 ≤ n ≤ 100000,有多组数据. 首先根 ...
- POJ 1905 Expanding Rods 二分答案几何
题目:http://poj.org/problem?id=1905 恶心死了,POJ的输出一会要lf,一会要f,而且精度1e-13才过,1e-12都不行,错了一万遍终于对了. #include < ...
- POJ - 1905 Expanding Rods(二分+计算几何)
http://poj.org/problem?id=1905 题意 一根两端固定在两面墙上的杆,受热后变弯曲.求前后两个状态的杆的中点位置的距离 分析 很明显需要推推公式. 由②的限制条件来二分角度, ...
- 【二分答案】Expanding Rods POJ 1905
题目链接:http://poj.org/problem?id=1905 题目大意:原长度为L的线段因受热膨胀为一段弧,线段L.弧长L'.温度n.膨胀率c满足L' =(1+n/c)*L;求线段的中点移动 ...
- poj 3061 题解(尺取法|二分
题意 $ T $ 组数据,每组数据给一个长度 $ N $ 的序列,要求一段连续的子序列的和大于 $ S $,问子序列最小长度为多少. 输入样例 2 10 15 5 1 3 5 10 7 4 9 2 8 ...
- poj 1905 Expanding Rods (数学 计算方法 二分)
题目链接 题意:将长度为L的棒子卡在墙壁之间.现在因为某种原因,木棒变长了,因为还在墙壁之间,所以弯成了一个弧度,现在求的是弧的最高处与木棒原先的地方的最大距离. 分析: 下面的分析是网上别人的分析: ...
随机推荐
- SpringBoot配置自定义美化Swagger2
1.添加maven依赖 <dependency> <groupId>io.springfox</groupId> <artifactId>springf ...
- git 的add .
git add . :他会监控工作区的状态树,使用它会把工作时的所有变化提交到暂存区,包括文件内容修改(modified)以及新文件(new),但不包括被删除的文件. git add -u :他仅监控 ...
- vue引入css和js的方法
1.引入js的话 require('地址') imgport xxx from ‘src’ import xxx 2.引入css @import ‘ ’
- LeetCode--148--排序链表(python)
在 O(n log n) 时间复杂度和常数级空间复杂度下,对链表进行排序. 示例 1: 输入: 4->2->1->3输出: 1->2->3->4示例 2: 输入: ...
- 终于决定要开始写自己的博客了,先Mark一下
终于决定要开始写了,但事实是,打开就觉得浪费时间,懒癌犯了
- AGC030F - Permutation and Minimum
https://atcoder.jp/contests/agc030/tasks/agc030_f 题解 我们先把这个排列从\(1 \sim 2n\)表达出来,然后题面中的每一对数我们可以用一条线把他 ...
- es之java分页操作
按照一般的查询流程来说,如果我想查询前10条数据: · 1 客户端请求发给某个节点 · 2 节点转发给个个分片,查询每个分片上的前10条 · 3 结果返回给节点,整合数据,提取前10条 · 4 返回给 ...
- 5分钟让你知道什么是PKI
转:https://www.cnblogs.com/jerain6312/p/8572841.html 前言 Public Key Infrastructure(PKI),中文叫做公开密钥基础设施,也 ...
- ijkplayer阅读笔记系列<转>
http://blog.csdn.net/peckjerry/article/details/47663275
- Linux内核调试方法总结之序言
本系列主要介绍Linux内核死机.异常重启类稳定性问题的调试方法. 在Linux系统中,一切皆为文件,而系统运行的载体,是一类特殊的文件,即进程.因此,我尝试从进程的角度分析Linux内核的死机.异常 ...