题面

传送门

分析



如图:已知AB=L,弧AB=L(1+nC)" role="presentation" style="position: relative;">AB=L,弧AB=L(1+nC)AB=L,弧AB=L(1+nC),M为AB中点,N为圆上一点,且ON垂直于AB于M,求MN

设半径为R" role="presentation" style="position: relative;">RR,∠AOM=θ" role="presentation" style="position: relative;">∠AOM=θ∠AOM=θ(弧度),MN=x" role="presentation" style="position: relative;">MN=xMN=x

则可列出方程组

{2Rθ=L(1+nc)(1)Rsin⁡θ=L2(2)x=R(1−cos⁡θ)(3)" role="presentation" style="position: relative;">⎧⎩⎨⎪⎪⎪⎪2Rθ=L(1+nc)(1)Rsinθ=L2(2)x=R(1−cosθ)(3){2Rθ=L(1+nc)(1)Rsin⁡θ=L2(2)x=R(1−cos⁡θ)(3)

若求出θ" role="presentation" style="position: relative;">θθ便可以求出x,所以我们从 θ" role="presentation" style="position: relative;">θθ入手,尝试解上面的方程组

由(1)(2)式得 θsin⁡θ=1+nC" role="presentation" style="position: relative;">θsinθ=1+nCθsin⁡θ=1+nC

本人数学不好,求不出上面的方程的解析解(如果有解析解可以在评论中指出)

于是采用二分的方法来近似求根

显然0&lt;θ≤π2" role="presentation" style="position: relative;">0<θ≤π20<θ≤π2

由图知θ" role="presentation" style="position: relative;">θθ越大,1+nC越大" role="presentation" style="position: relative;">1+nC越大1+nC越大

我们二分θ" role="presentation" style="position: relative;">θθ,设二分中点为mid,端点为[L,R]并计算midsin⁡mid" role="presentation" style="position: relative;">midsinmidmidsin⁡mid,若midsin⁡mid&gt;1+nC" role="presentation" style="position: relative;">midsinmid>1+nCmidsin⁡mid>1+nC,则寻找更小的,R=mid.否则寻找更大的,L=mid

还有几个细节:

1.π" role="presentation" style="position: relative;">ππ一定要很精确,否则会WA

2.设定的二分误差要尽量小

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define eps 1e-11
#define pi 3.141592653589793
using namespace std;
double L,n,C,theta,x;
int main(){
while(scanf("%lf %lf %lf",&L,&n,&C)!=EOF){
if(L==n&&n==C&&C==-1) break;
if(n*C==0){
printf("0.000\n");
continue;
}
double l=eps,r=pi/2;//用弧度表示角
while(fabs(l-r)>eps){
double mid=(l+r)/2;
double hu=mid/sin(mid);
if(hu>1+n*C) r=mid;
else l=mid;
}
theta=l;
double R=L/(2*sin(theta));
printf("%.3f\n",R*(1-cos(theta)));
}
}

POJ 1905 题解(二分+几何)的更多相关文章

  1. D - Expanding Rods POJ - 1905(二分)

    D - Expanding Rods POJ - 1905 When a thin rod of length L is heated n degrees, it expands to a new l ...

  2. POJ 1840 Eqs 二分+map/hash

    Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The co ...

  3. poj 2318 叉积+二分

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13262   Accepted: 6412 Description ...

  4. poj 2049(二分+spfa判负环)

    poj 2049(二分+spfa判负环) 给你一堆字符串,若字符串x的后两个字符和y的前两个字符相连,那么x可向y连边.问字符串环的平均最小值是多少.1 ≤ n ≤ 100000,有多组数据. 首先根 ...

  5. POJ 1905 Expanding Rods 二分答案几何

    题目:http://poj.org/problem?id=1905 恶心死了,POJ的输出一会要lf,一会要f,而且精度1e-13才过,1e-12都不行,错了一万遍终于对了. #include < ...

  6. POJ - 1905 Expanding Rods(二分+计算几何)

    http://poj.org/problem?id=1905 题意 一根两端固定在两面墙上的杆,受热后变弯曲.求前后两个状态的杆的中点位置的距离 分析 很明显需要推推公式. 由②的限制条件来二分角度, ...

  7. 【二分答案】Expanding Rods POJ 1905

    题目链接:http://poj.org/problem?id=1905 题目大意:原长度为L的线段因受热膨胀为一段弧,线段L.弧长L'.温度n.膨胀率c满足L' =(1+n/c)*L;求线段的中点移动 ...

  8. poj 3061 题解(尺取法|二分

    题意 $ T $ 组数据,每组数据给一个长度 $ N $ 的序列,要求一段连续的子序列的和大于 $ S $,问子序列最小长度为多少. 输入样例 2 10 15 5 1 3 5 10 7 4 9 2 8 ...

  9. poj 1905 Expanding Rods (数学 计算方法 二分)

    题目链接 题意:将长度为L的棒子卡在墙壁之间.现在因为某种原因,木棒变长了,因为还在墙壁之间,所以弯成了一个弧度,现在求的是弧的最高处与木棒原先的地方的最大距离. 分析: 下面的分析是网上别人的分析: ...

随机推荐

  1. java IO操作分类

  2. LTE系统时延及降低空口时延的4种方案

    转载:https://rf.eefocus.com/article/id-LTE%20delay 对于移动通信业务而言,最重要的时延是端到端时延, 即对于已经建立连接的收发两端,数据包从发送端产生,到 ...

  3. PHP入门培训教程 php动态网页怎么转换成html

       当动态网页遇上搜索引擎 虽然动态网页相比于静态页面拥有许多优势,但它在搜索引擎的检索上却碰了个大钉子.无论任何一家网站,尤其是那些以营销为目的的企业网站,没有谁会希望自己的网页无法被搜索引擎检索 ...

  4. Apache简介

    1.什么是Apache 注:Apache是目前使用最广泛的Web服务器软件. 2.发展历史 注:客户端mosaic程序是Netscape浏览器的前身,后来演变成mozilla浏览器,即我们使用的Fir ...

  5. [USACO10HOL]牛的政治Cow Politics

    农夫约翰的奶牛住在N ( <= N <= ,)片不同的草地上,标号为1到N.恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地.而且从每片草地出发都可以抵达其他所有草地.也就是 ...

  6. [USACO07OPEN]Dining 题解

    前言 如果有人不会网络流,那么安利一下我网络最大流Dinic的博客 关于网络流,我多久没有碰这个算法了... 这是一道网络流好题. 题解 这道题目难点主要是构图. 这道题的构图一开始很容易想到建一个超 ...

  7. OpenCV Mat&Operations

    /*M/////////////////////////////////////////////////////////////////////////////////////////// IMPOR ...

  8. Qt中图元对象的多重集成

    在继承自定义QGraphicsItem图元对象时,有时需要用到信号/槽机制,由于QGraphicsItem非QObject的子类 所以需要多重继承QObject,有一点需要特别注意:就是继承的顺序,一 ...

  9. 转载:PICT使用教程(设计测试用例工具)

    原文:https://blog.csdn.net/quiet_girl/article/details/50699543 之前一篇写了正交设计助手的使用教程,与正交设计助手相比,个人觉得PICT的使用 ...

  10. 大数据笔记(二十)——NoSQL数据库之MemCached

    一.为什么要把数据存入内存? 1.原因:快2.常见的内存数据库 (*)MemCached:看成Redis的前身,严格来说Memcached的不能叫数据库,原因:不支持持久化 (*)Redis:内存数据 ...