poj3208 Apocalypse Someday[数位DP]
数位中出现至少3个连续的'6'的数字(称魔鬼数),询问满足要求的排名k的数。
经典题型。采用试填法。
递推做法:预处理出$i$位数字中满足要求的数(下记为'魔鬼数')。对每一位都从0到9试一遍,然而卡在了试填时试到6这个数时该怎么办,不太会做。然后才知道可以记录填到目前的上一位已有多少个连续的6,这样可以配合当前的计算出来。
所以就有这个$f[i][0]=9*(f[i-1][0]+f[i-1][1]+f[i-1][2]),f[i][1]=f[i-1][0],f[i][2]=f[i-1][1],f[i][3]=10*f[i-1][3]+f[i-1][2]$
其中0表示开头有0个6,1表示开头有一个6,2同理,3表示当前小于等于i位的魔鬼数的数量(也就相当于把各位数的魔鬼数累积起来)
注意是算入前导0的。比如有004566674,因为试填时他也算一种。而开头不必担心,看代码第1次循环就会发现考虑0的时候恰好把小于i位的魔鬼数数量都减掉了,说不太清楚,还是自己想想吧。
用k以辅助记录当前填过的末尾连续的6数量,用于处理填6时计算,每填一个6就多算一下。k到3时表示我已经诞生连续3个的6了,所以后面所有的填法都合法,这是要再单独特殊处理,看code。
其他就是常规的试填。
说两点细节:
注意边界处理 ,考虑预处理DP值的边界,尤其是f[0],f[1]等;
试填也要考虑边界。比如开始时。结束时(最后一位),这直接和f[0][0]的初始化产生了联系。所以两个边界都要看一下检查正确性。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define dbg(x) cerr<<#x<<" = "<<x<<endl
#define ddbg(x,y) cerr<<#x<<" = "<<x<<" "<<#y<<" = "<<y<<endl
using namespace std;
typedef pair<int,int> pii;
typedef long long ll;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
ll f[][],rk,cnt;
int T;
inline void preprocess(){
f[][]=,f[][]=;f[][]=;//←注意边界处理 ,DP和试填都要检验一下
for(register int i=;i<=;++i)f[i][]=*(f[i-][]+f[i-][]+f[i-][]),f[i][]=f[i-][],f[i][]=f[i-][],f[i][]=*f[i-][]+f[i-][];
} int main(){//freopen("test.in","r",stdin);freopen("test.out","w",stdout);
read(T);preprocess();while(T--){
read(rk);int x;for(x=;x<=;++x)if(rk<=f[x][])break;
for(register int i=x,k=;i;--i){
for(register int j=;j<=;++j){
cnt=f[i-][];
if(k==)cnt+=f[i-][]+f[i-][]+f[i-][];
else if(j==)for(register int l=-k;l<;++l)cnt+=f[i-][l];
if(rk<=cnt){
if(k<){if(j==)++k;else k=;}
printf("%d",j);break;
}
else rk-=cnt;
}
}
puts("");
}
return ;
}
然后讲一下记搜的,可以套模板。求第k大的数,可以转化为二分枚举区间[1,n]的右边界n,看[1,n]的满足要求的数,由于其随区间变大而单调增,所以是二分。通过不断调整,可以找到最小n使得区间[1,n]恰有k个满足要求的数。这个因为是套模板,所以很好写。但是二分的话会让复杂度多一个log。。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define dbg(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
typedef long long ll;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
int T;
ll L,R,f[][][][],b[],aim;
ll dp(int len,bool las,bool las2,bool fil,bool limit){
if(!len)return fil;
if(!limit&&~f[len][las][las2][fil])return f[len][las][las2][fil];
ll cnt=;int num=limit?b[len]:;
for(register int i=;i<=num;++i)cnt+=dp(len-,i==,las,fil||(las&&las2&&i==),limit&&i==num);
return limit?cnt:f[len][las][las2][fil]=cnt;
}
inline ll solve(ll x){
int k=;while(x)b[++k]=x%,x/=;
return dp(k,,,,);
} int main(){//freopen("tmp.txt","r",stdin);//freopen("test.out","w",stdout)£»
memset(f,-,sizeof f);
read(T);while(T--){
read(aim);L=,R=1e10;ll mid;
while(L<R){
mid=L+R>>;
if(solve(mid)<aim)L=mid+;
else R=mid;
}
printf("%lld\n",L);
}
return ;
}
poj3208 Apocalypse Someday[数位DP]的更多相关文章
- poj3208 Apocalypse Someday 数位dp+二分 求第K(K <= 5*107)个有连续3个6的数。
/** 题目:poj3208 Apocalypse Someday 链接:http://poj.org/problem?id=3208 题意:求第K(K <= 5*107)个有连续3个6的数. ...
- POJ 3689 Apocalypse Someday [数位DP]
Apocalypse Someday Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 1807 Accepted: 87 ...
- POJ3208 Apocalypse Someday(二分 数位DP)
数位DP加二分 //数位dp,dfs记忆化搜索 #include<iostream> #include<cstdio> #include<cstring> usin ...
- POJ3208 Apocalypse Someday
题意 Language:Default Apocalypse Someday Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 2 ...
- POJ-3208 Apocalypse Someday (数位DP)
只要某数字的十进制表示中有三个6相邻,则该数字为魔鬼数,求第X小的魔鬼数\(X\le 5e7\) 这一类题目可以先用DP进行预处理,再基于拼凑思想,用"试填法"求出最终的答案 \( ...
- POJ 3208-Apocalypse Someday(数位dp)
题意:给定n,输出第n大包含666的数字. 分析:dp[i][j][k][l]表示 长度为i,当前位是否是6,前一位是否6,是否已经包含666,表示的数量,再用二分找出第n大的这样的数字. #incl ...
- 数位DP专题
这周开始刷数位DP,在网上找到一份神级数位DP模板,做起题目来爽歪歪. http://www.cnblogs.com/jffifa/archive/2012/08/17/2644847.html in ...
- 开坑数位dp
[背景] 在10月3日的dp专练中,压轴的第6题是一道数位dp,于是各种懵逼. 为了填上这个留存已久的坑,蒟蒻chty只能开坑数位dp了. [例题一][HDU2089]不要62 题目大意:给你一个区间 ...
- 数位dp真·浅谈 By cellur925
预警:由于是从$Vergil$学长那里和$Mathison$大神那里学来的,所以清一色记忆化搜索!qwq 巨佬的数位dp讲解(未来的咕咕日报头条): https://www.luogu.org/blo ...
随机推荐
- SqlServer try catch 捕获触发器\存储过程异常,结合 transaction 事务
SoEasy~,贴上代码看所有 ALTER trigger [dbo].[tgr_SG_Gathering_update] on [dbo].[SG_Gathering] for update --更 ...
- 数据测试003:利用Jmeter推送测试数据(下)
数据测试003:利用Jmeter推送测试数据(中) 今天继续学习用Jmeter推送数据,这次换Oracle数据 1)安装jdbc驱动,对应自己数据库安装的版本,我的是11g的,安装目录是在Jmeter ...
- linux(centos7)下SVN服务器搭建
https://www.cnblogs.com/fuyuanming/p/6123395.html linux(centos)下SVN服务器如何搭建?说到SVN服务器,想必大家都知道,可以是在LINU ...
- PJzhang:一道看线索找答案的逻辑题
猫宁!!! 这道逻辑题,2年前就有打算解决,但是没上心,今天抽空梳理出来了思路,逻辑上可以跑的通,不至于以后慢慢忘了,这道题和数独题基本类似,但是也许更花时间,做这种题最好看着线索列图标,省的不停翻页 ...
- windows使用放大镜快速放大屏幕局部
Win10系统自带放大镜有时真的是比较难使用的,但是如果你对他的快捷键有所了解之后就会感觉它其实也没有那么难,用户可以在使用完之后直接按快捷键将其关闭,一起看看吧. Win10系统放大镜快速关闭快捷键 ...
- Laravel策略(Policy)示例
场景:当前用户创建的订单,只能当前用户自己看,可以通过授权策略类(Policy)来实现 1.php artisan make:policy OrderPolicy 成功后,默认只有一个构造方法.因为涉 ...
- 如何用快排思想在O(n)内查找第K大元素--极客时间王争《数据结构和算法之美》
前言 半年前在极客时间订阅了王争的<数据结构和算法之美>,现在决定认真去看看.看到如何用快排思想在O(n)内查找第K大元素这一章节时发现王争对归并和快排的理解非常透彻,讲得也非常好,所以想 ...
- Idea导入Eclipse的Web项目并部署到Tomcat
⒈启动Idea,选择导入项目 选择导入的项目路径后,选择项目类型后一路next即可. ⒉选择File->Project Structure打开项目配置窗口(ctrl + alt + shift ...
- 对C++类的继承和派生的理解
C++中的继承是类与类之间的关系,是一个很简单很直观的概念,与现实世界中的继承类似,例如儿子继承父亲的财产. 1.继承(Inheritance)可以理解为一个类从另一个类获取成员变量和成员函数的过程. ...
- Springboot提示数据库连接问题Connection is not available
2019-05-29 11:19:51.824 WARN 854 --- [io-8080-exec-10] o.h.engine.jdbc.spi.SqlExceptionHelper : SQL ...