HDU 5634 线段树
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5634
题意:给定一个长度为n的序列,有m次操作。操作有3种:
1 l,r :区间[l,r]的值变成phi[val[i]](l<=i<=r; phi是欧拉值)
2 l,r,x:区间[l,r]的值变成x
3 l,r:求区间[l,r]的和
思路:操作2和3就是传统的简单线段树,操作2对应区间覆盖,操作3对应区间求和,重点在于操作1,由于一个数经过不超过log次求phi后会变成1,所以可以在线段树是用一个same标记,如果整个区间的数都相同则操作1就转换成操作2的区间覆盖了。如果操作的区间[l,r]已经包含住当前递归的子树区间但是子树的same标记为假则继续递归到子树的same标记为真为止,最多递归到叶子结点。
#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<queue>
#include<vector>
#include<time.h>
#include<cmath>
using namespace std;
typedef long long int LL;
#define L(k)(k<<1)
#define R(k)(k<<1|1)
const LL INF = ;
const int MAXN = 3e5 + ;
const int MAXX = 1e7 + ;
struct Node{
int l, r, val;
LL sum;
bool same;
Node(int _l = , int _r = , int _val = , LL _sum = , bool _same = false){
l = _l; r = _r; sum = _sum; same = _same; val = _val;
}
}Seg[MAXN * ];
int val[MAXN], Phi[MAXX];
void pushUp(int k){
Seg[k].sum = Seg[L(k)].sum + Seg[R(k)].sum;
if (Seg[L(k)].val == Seg[R(k)].val&&Seg[L(k)].same&&Seg[R(k)].same&&Seg[L(k)].val != -){
Seg[k].same = true;
Seg[k].val = Seg[L(k)].val;
}
else{
Seg[k].same = false;
Seg[k].val = -;
}
}
void pushDown(int k){
if (Seg[k].same){
Seg[L(k)].same = Seg[R(k)].same = true;
Seg[L(k)].val = Seg[R(k)].val = Seg[k].val;
Seg[L(k)].sum = 1LL * (Seg[L(k)].r - Seg[L(k)].l + )*Seg[L(k)].val;
Seg[R(k)].sum = 1LL * (Seg[R(k)].r - Seg[R(k)].l + )*Seg[R(k)].val;
}
}
void Build(int st, int ed, int k){
Seg[k].l = st; Seg[k].r = ed; Seg[k].same = false; Seg[k].val = -;
if (st == ed){
Seg[k].val = val[st];
Seg[k].sum = val[st];
Seg[k].same = true;
return;
}
int mid = (st + ed) >> ;
Build(st, mid, L(k)); Build(mid + , ed, R(k));
pushUp(k);
}
void Change(int st, int ed, int val, int k){
if (Seg[k].l == st&&Seg[k].r == ed){
Seg[k].same = true;
Seg[k].val = val;
Seg[k].sum = 1LL * (ed - st + )*val;
return;
}
pushDown(k);
if (Seg[L(k)].r >= ed){
Change(st, ed, val, L(k));
}
else if (Seg[R(k)].l <= st){
Change(st, ed, val, R(k));
}
else{
Change(st, Seg[L(k)].r, val, L(k));
Change(Seg[R(k)].l, ed, val, R(k));
}
pushUp(k);
}
void Modify(int st, int ed, int k){
if (Seg[k].l == st&&Seg[k].r == ed&&Seg[k].same){
Seg[k].val = Phi[Seg[k].val];
Seg[k].sum = 1LL * (ed - st + )*Seg[k].val;
return;
}
pushDown(k);
if (Seg[L(k)].r >= ed){
Modify(st, ed, L(k));
}
else if (Seg[R(k)].l <= st){
Modify(st, ed, R(k));
}
else{
Modify(st, Seg[L(k)].r, L(k));
Modify(Seg[R(k)].l, ed, R(k));
}
pushUp(k);
}
LL Query(int st, int ed, int k){
if (Seg[k].l == st&&Seg[k].r == ed){
return Seg[k].sum;
}
pushDown(k);
if (Seg[L(k)].r >= ed){
return Query(st, ed, L(k));
}
else if (Seg[R(k)].l <= st){
return Query(st, ed, R(k));
}
else{
return Query(st, Seg[L(k)].r, L(k)) + Query(Seg[R(k)].l, ed, R(k));
}
pushUp(k);
}
void GetPhi(){ //预处理欧拉值
memset(Phi, , sizeof(Phi));
Phi[] = ;
for (LL i = ; i < MAXX; i++){
if (!Phi[i]){
for (LL j = i; j < MAXX; j += i){
if (!Phi[j]) Phi[j] = j;
Phi[j] = Phi[j] / i*(i - );
}
}
}
}
int main(){
//#ifdef kirito
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
//#endif
// int start = clock();
int n, t, m; GetPhi();
scanf("%d", &t);
while (t--){
scanf("%d%d", &n, &m);
for (int i = ; i <= n; i++){
scanf("%d", &val[i]);
}
Build(, n, );
for (int i = ; i <= m; i++){
int tpe, l, r, x;
scanf("%d%d%d", &tpe, &l, &r);
if (tpe == ){
Modify(l, r, );
}
else if (tpe == ){
scanf("%d", &x);
Change(l, r, x, );
}
else{
printf("%lld\n", Query(l, r, ));
}
}
}
//#ifdef LOCAL_TIME
// cout << "[Finished in " << clock() - start << " ms]" << endl;
//#endif
return ;
}
HDU 5634 线段树的更多相关文章
- hdu 5877 线段树(2016 ACM/ICPC Asia Regional Dalian Online)
Weak Pair Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total ...
- hdu 3974 线段树 将树弄到区间上
Assign the task Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 3436 线段树 一顿操作
Queue-jumpers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) To ...
- hdu 3397 线段树双标记
Sequence operation Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- hdu 4578 线段树(标记处理)
Transformation Time Limit: 15000/8000 MS (Java/Others) Memory Limit: 65535/65536 K (Java/Others) ...
- hdu 4533 线段树(问题转化+)
威威猫系列故事——晒被子 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Tot ...
- hdu 2871 线段树(各种操作)
Memory Control Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- hdu 4052 线段树扫描线、奇特处理
Adding New Machine Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- hdu 1542 线段树扫描(面积)
Atlantis Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Su ...
随机推荐
- darknet-yolov3使用opencv3.4.8时,undefined reference 'imshow()'、'waitKey()'、'nameWindows()'
解决办法:暴力卸载 卸载办法:进入到opencv3.4.8的安装目录下:make uninstall 然后重新安装了其他版本的,立马编译通过了.
- python每日练习0730
""" 1. 现有面包.热狗.番茄酱.芥末酱以及洋葱,数字显 示有多少种订购组合, 其中面包必订,0 不订,1 订,比如 10000,表示只订购面包 "&quo ...
- Jenkines邮件中添加图片
1.在Jenkins的邮件插件 Email-ext中的Default Content内容编写html文件,简单模板如下: <html> <head> </head&g ...
- 微信小程序接口封装
看到个不错的总结,如下 https://blog.csdn.net/weixin_42270487/article/details/84868443 https://kuangpf.com/mpvue ...
- Strange fuction hdu 2899
Strange fuction Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- Spring Boot 集成 RabbitMQ 实战
Spring Boot 集成 RabbitMQ 实战 特别说明: 本文主要参考了程序员 DD 的博客文章<Spring Boot中使用RabbitMQ>,在此向原作者表示感谢. Mac 上 ...
- centos7systemctl介绍
Linux中如何启动.重启.停止.重载服务以及检查服务(如 httpd.service)状态 # systemctl start httpd.service # systemctl restart ...
- 架构-SOA:SOA(面向服务的架构)
ylbtech-架构-SOA:SOA(面向服务的架构) 面向服务的架构(SOA)是一个组件模型,它将应用程序的不同功能单元(称为服务)进行拆分,并通过这些服务之间定义良好的接口和契约联系起来.接口是采 ...
- unittest测试框架生成可视化测试报告-BeautifulReport
生成报告的样式: 在说unittest之前,先说几个概念: TestCase 也就是测试用例 TestSuite 多个测试用例集合在一起,就是TestSuite TestLoader是用来加载Test ...
- PHP 调试 - 方式
之前学 Java 的时候,一直使用 IDE 的 console 控制台进行调试.后来搞 PHP 后,习惯在代码里面 echo 和 exit,然后在浏览器刷新看效果,把单步调试.变量值查看等常用的调试方 ...