给定一个长度为N的数列A,以及M条指令,每条指令可能是以下两种之一:

1、“C l r d”,表示把 A[l],A[l+1],…,A[r] 都加上 d。

2、“Q l r”,表示询问 A[l],A[l+1],…,A[r] 的最大公约数(GCD)。

对于每个询问,输出一个整数表示答案。

输入格式

第一行两个整数N,M。

第二行N个整数A[i]。

接下来M行表示M条指令,每条指令的格式如题目描述所示。

输出格式

对于每个询问,输出一个整数表示答案。

每个答案占一行。

数据范围

N≤500000,M≤100000N≤500000,M≤100000

输入样例:

5 5
1 3 5 7 9
Q 1 5
C 1 5 1
Q 1 5
C 3 3 6
Q 2 4

输出样例:

1
2
4

算法:线段树 + 增量数组(树状数组) + 差分序列

题解:

  性质:

  • gcd(a, b) = gcd(a, b - a)
  • gcd(a, b, c) = gcd(a, b - a, c - b)
  • acd(a1, a2, ... , an) = gcd(a1, a2 - a1, ... , an - an-1)

  利用这条性质来求解此题

  1. 对用询问“Q l r”来说,可以求出结果__gcd(arr[l], query(1, l + 1, r),就是同上面的性质,前面那个arr[l]就是性质里面的第一个数,后面的就是存在了线段树里面差分序列,求出(l + 1, r)区间的最大公约数即可。(其中的arr[l]等于原本数组里面的值加上后面更改的值,更改的值记录再树状数组里面)。
  2. 对于询问“C l r d”来说,只需要修改树状数组里面的值,以及线段树里面的值即可。

注意:题目会爆int,需要用long long。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath> using namespace std; typedef long long ll; const int maxn = 5e5+; struct node {
ll l, r;
ll dat;
}tree[maxn << ]; //维护差分序列的线段树 ll n, m;
ll d[maxn]; //差分数组
ll arr[maxn]; //原始数组
ll T[maxn]; //增量数组(树状数组) ll lowbit(ll x) {
return x & (-x);
} void pushup(ll root) {
tree[root].dat = __gcd(tree[root << ].dat, tree[root << | ].dat);
} void build(ll root, ll l, ll r) {
tree[root].l = l;
tree[root].r = r;
if(l == r) {
tree[root].dat = d[l];
return;
}
ll mid = (l + r) >> ;
build(root << , l, mid);
build(root << | , mid + , r);
pushup(root);
} void add(ll x, ll val) {
while(x <= n) {
T[x] += val;
x += lowbit(x);
}
} ll ask(ll x) {
ll res = ;
while(x > ) {
res += T[x];
x -= lowbit(x);
}
return res;
} void update(ll root, ll pos, ll val) {
ll l = tree[root].l;
ll r = tree[root].r;
if(l == r) {
tree[root].dat += val;
return;
}
ll mid = (l + r) >> ;
if(pos <= mid) {
update(root << , pos, val);
} else {
update(root << | , pos, val);
}
pushup(root);
} ll query(ll root, ll x, ll y) {
ll l = tree[root].l;
ll r = tree[root].r;
if(x <= l && r <= y) {
return tree[root].dat;
}
ll mid = (l + r) >> ;
ll res = ;
if(x <= mid) {
res = __gcd(res, query(root << , x, y));
}
if(y > mid) {
res = __gcd(res, query(root << | , x, y));
}
return abs(res); //注意:这里需要加绝对值,因为可能出现负数
} int main() {
scanf("%lld%lld", &n, &m);
for(ll i = ; i <= n; i++) {
scanf("%lld", &arr[i]);
d[i] = arr[i] - arr[i - ]; //构建差分数组
}
build(, , n);
while(m--) {
char str[];
ll l, r, val;
scanf("%s", str);
if(str[] == 'Q') {
scanf("%lld %lld", &l, &r);
ll now = arr[l] + ask(l); //获取当前位置的值(原始数组 + 增量数组)
printf("%lld\n", __gcd(now, query(, l + , r))); //与后面的部分求最大公约数
} else {
scanf("%lld %lld %lld", &l, &r, &val);
add(l, val);
add(r + , -val);
update(, l, val);
if(r < n) { //判断是否会越界
update(, r + , -val);
} }
}
return ;
}

AcWing:246. 区间最大公约数(线段树 + 增量数组(树状数组) + 差分序列)的更多相关文章

  1. AcWing 246. 区间最大公约数

    246. 区间最大公约数 思路: 首先根据更相减损术,我们得到一个结论: \(gcd(a_l, a_{l+1}, ...,a_r) = gcd(a_l, a_{l+1}-a_l, a_{l+2}-a_ ...

  2. 【bzoj3132】上帝造题的七分钟 二维树状数组区间修改区间查询

    题目描述 “第一分钟,X说,要有矩阵,于是便有了一个里面写满了0的n×m矩阵. 第二分钟,L说,要能修改,于是便有了将左上角为(a,b),右下角为(c,d)的一个矩形区域内的全部数字加上一个值的操作. ...

  3. [bzoj3155]Preprefix sum(树状数组)

    3155: Preprefix sum Time Limit: 1 Sec  Memory Limit: 512 MBSubmit: 1183  Solved: 546[Submit][Status] ...

  4. Codeforces 980E The Number Games - 贪心 - 树状数组

    题目传送门 传送点I 传送点II 传送点III 题目大意 给定一颗有$n$个点的树,$i$号点的权值是$2^{i}$要求删去$k$个点,使得剩下的点仍然连通,并且总权值和最大,问删去的所有点的编号. ...

  5. 1082 线段树练习 3 && 树状数组区间修改区间查询

    1082 线段树练习 3 题意: 给定序列初值, 要求支持区间修改, 区间查询 Solution 用树状数组, 代码量小, 空间占用小 巧用增量数组, 修改时在 \(l\) 处 $ + val$ , ...

  6. acwing 243. 一个简单的整数问题2 树状数组 线段树

    地址 https://www.acwing.com/problem/content/description/244/ 给定一个长度为N的数列A,以及M条指令,每条指令可能是以下两种之一: 1.“C l ...

  7. HDU 4031 Attack(线段树/树状数组区间更新单点查询+暴力)

    Attack Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others) Total Sub ...

  8. NBOJv2 1050 Just Go(线段树/树状数组区间更新单点查询)

    Problem 1050: Just Go Time Limits:  3000 MS   Memory Limits:  65536 KB 64-bit interger IO format:  % ...

  9. POJ 2155 Matrix (二维线段树入门,成段更新,单点查询 / 二维树状数组,区间更新,单点查询)

    题意: 有一个n*n的矩阵,初始化全部为0.有2中操作: 1.给一个子矩阵,将这个子矩阵里面所有的0变成1,1变成0:2.询问某点的值 方法一:二维线段树 参考链接: http://blog.csdn ...

随机推荐

  1. Ubuntu基本操作(博主想上传图片给服务器的一些命令)

    1.将当前目录下的文件移动至指定文件夹,这里用移动至网站的根目录做示范 sudo mv bamboo.jpg /val/www/html mv bamboo.jpg /val/www/html 2.进 ...

  2. Django基础之jQuery操作

    Django基础之jQuery操作 jquery之cookie操作 定义:让网站服务器把少量数据储存到客户端的硬盘或内存,从客户端的硬盘读取数据的一种技术: 下载与引入:jquery.cookie.j ...

  3. certutil 命令配合PS反弹后门

    Certutil.exe是一个命令行程序,作为证书服务的一部分安装.您可以使用Certutil.exe转储和显示证书颁发机构(CA)配置信息,配置证书服务,备份和还原CA组件以及验证证书,密钥对和证书 ...

  4. Spring Cloud Gateway真的有那么差吗?

    动机 已经不止一次看到"Spring Cloud Gateway性能比Zuul更差"的言论了,不少人人云亦云,来问我,既然如此,那Spring官方还开发Spring Cloud G ...

  5. Redis之面试题总结

    缓存雪崩 缓存穿透 缓存与数据库双写一致 最后 随着系统访问量的提高,复杂度的提升,响应性能成为一个重点的关注点.而缓存的使用成为一个重点.redis 作为缓存中间件的一个佼佼者,成为了面试必问项目. ...

  6. Object 对象(对象的分类、属性(属性名和属性值)、基本数据类型与引用数据类型区别)

    Object——引用数据类型 基本数据类型的不足之处:基本数据类型是单一的值,不能表现出值与值之间的所属关系 object分为内建对象.宿主对象和自定义对象 a 内建对象:ES标准中定义的对象,在任何 ...

  7. Vue自定义组件以及组件通信的几种方式

    本帖子来源:小贤笔记 功能 组件 (Component) 是 Vue.js 最强大的功能之一.组件可以扩展 HTML 元素,封装可重用的代码.在较高层面上,组件是自定义元素,Vue.js 的编译器为它 ...

  8. Boston Key Party 2015 Heath Street 题解(Writeup)

    Heath Street是Boston Key Party 2015的一道数字取证题目,我们得到了一个叫做“secretArchive.6303dd5dbddb15ca9c4307d0291f77f4 ...

  9. python jdbc连接 oracle 数据库

    准备写一个代码生成的小工具自己用,第一步,连接数据库 import jaydebeapi url = 'jdbc:oracle:thin:@192.168.0.13:1521:JGD' user = ...

  10. Tomcat各版本及源码包下载

    Tomcat各版本及源码包下载 1.百度 Tomcat 进入官网2.Tomcat 官网地址:http://tomcat.apache.org/3.所有 Tomcat 版本及源码包下载地址:https: ...