给定一个长度为N的数列A,以及M条指令,每条指令可能是以下两种之一:

1、“C l r d”,表示把 A[l],A[l+1],…,A[r] 都加上 d。

2、“Q l r”,表示询问 A[l],A[l+1],…,A[r] 的最大公约数(GCD)。

对于每个询问,输出一个整数表示答案。

输入格式

第一行两个整数N,M。

第二行N个整数A[i]。

接下来M行表示M条指令,每条指令的格式如题目描述所示。

输出格式

对于每个询问,输出一个整数表示答案。

每个答案占一行。

数据范围

N≤500000,M≤100000N≤500000,M≤100000

输入样例:

5 5
1 3 5 7 9
Q 1 5
C 1 5 1
Q 1 5
C 3 3 6
Q 2 4

输出样例:

1
2
4

算法:线段树 + 增量数组(树状数组) + 差分序列

题解:

  性质:

  • gcd(a, b) = gcd(a, b - a)
  • gcd(a, b, c) = gcd(a, b - a, c - b)
  • acd(a1, a2, ... , an) = gcd(a1, a2 - a1, ... , an - an-1)

  利用这条性质来求解此题

  1. 对用询问“Q l r”来说,可以求出结果__gcd(arr[l], query(1, l + 1, r),就是同上面的性质,前面那个arr[l]就是性质里面的第一个数,后面的就是存在了线段树里面差分序列,求出(l + 1, r)区间的最大公约数即可。(其中的arr[l]等于原本数组里面的值加上后面更改的值,更改的值记录再树状数组里面)。
  2. 对于询问“C l r d”来说,只需要修改树状数组里面的值,以及线段树里面的值即可。

注意:题目会爆int,需要用long long。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath> using namespace std; typedef long long ll; const int maxn = 5e5+; struct node {
ll l, r;
ll dat;
}tree[maxn << ]; //维护差分序列的线段树 ll n, m;
ll d[maxn]; //差分数组
ll arr[maxn]; //原始数组
ll T[maxn]; //增量数组(树状数组) ll lowbit(ll x) {
return x & (-x);
} void pushup(ll root) {
tree[root].dat = __gcd(tree[root << ].dat, tree[root << | ].dat);
} void build(ll root, ll l, ll r) {
tree[root].l = l;
tree[root].r = r;
if(l == r) {
tree[root].dat = d[l];
return;
}
ll mid = (l + r) >> ;
build(root << , l, mid);
build(root << | , mid + , r);
pushup(root);
} void add(ll x, ll val) {
while(x <= n) {
T[x] += val;
x += lowbit(x);
}
} ll ask(ll x) {
ll res = ;
while(x > ) {
res += T[x];
x -= lowbit(x);
}
return res;
} void update(ll root, ll pos, ll val) {
ll l = tree[root].l;
ll r = tree[root].r;
if(l == r) {
tree[root].dat += val;
return;
}
ll mid = (l + r) >> ;
if(pos <= mid) {
update(root << , pos, val);
} else {
update(root << | , pos, val);
}
pushup(root);
} ll query(ll root, ll x, ll y) {
ll l = tree[root].l;
ll r = tree[root].r;
if(x <= l && r <= y) {
return tree[root].dat;
}
ll mid = (l + r) >> ;
ll res = ;
if(x <= mid) {
res = __gcd(res, query(root << , x, y));
}
if(y > mid) {
res = __gcd(res, query(root << | , x, y));
}
return abs(res); //注意:这里需要加绝对值,因为可能出现负数
} int main() {
scanf("%lld%lld", &n, &m);
for(ll i = ; i <= n; i++) {
scanf("%lld", &arr[i]);
d[i] = arr[i] - arr[i - ]; //构建差分数组
}
build(, , n);
while(m--) {
char str[];
ll l, r, val;
scanf("%s", str);
if(str[] == 'Q') {
scanf("%lld %lld", &l, &r);
ll now = arr[l] + ask(l); //获取当前位置的值(原始数组 + 增量数组)
printf("%lld\n", __gcd(now, query(, l + , r))); //与后面的部分求最大公约数
} else {
scanf("%lld %lld %lld", &l, &r, &val);
add(l, val);
add(r + , -val);
update(, l, val);
if(r < n) { //判断是否会越界
update(, r + , -val);
} }
}
return ;
}

AcWing:246. 区间最大公约数(线段树 + 增量数组(树状数组) + 差分序列)的更多相关文章

  1. AcWing 246. 区间最大公约数

    246. 区间最大公约数 思路: 首先根据更相减损术,我们得到一个结论: \(gcd(a_l, a_{l+1}, ...,a_r) = gcd(a_l, a_{l+1}-a_l, a_{l+2}-a_ ...

  2. 【bzoj3132】上帝造题的七分钟 二维树状数组区间修改区间查询

    题目描述 “第一分钟,X说,要有矩阵,于是便有了一个里面写满了0的n×m矩阵. 第二分钟,L说,要能修改,于是便有了将左上角为(a,b),右下角为(c,d)的一个矩形区域内的全部数字加上一个值的操作. ...

  3. [bzoj3155]Preprefix sum(树状数组)

    3155: Preprefix sum Time Limit: 1 Sec  Memory Limit: 512 MBSubmit: 1183  Solved: 546[Submit][Status] ...

  4. Codeforces 980E The Number Games - 贪心 - 树状数组

    题目传送门 传送点I 传送点II 传送点III 题目大意 给定一颗有$n$个点的树,$i$号点的权值是$2^{i}$要求删去$k$个点,使得剩下的点仍然连通,并且总权值和最大,问删去的所有点的编号. ...

  5. 1082 线段树练习 3 && 树状数组区间修改区间查询

    1082 线段树练习 3 题意: 给定序列初值, 要求支持区间修改, 区间查询 Solution 用树状数组, 代码量小, 空间占用小 巧用增量数组, 修改时在 \(l\) 处 $ + val$ , ...

  6. acwing 243. 一个简单的整数问题2 树状数组 线段树

    地址 https://www.acwing.com/problem/content/description/244/ 给定一个长度为N的数列A,以及M条指令,每条指令可能是以下两种之一: 1.“C l ...

  7. HDU 4031 Attack(线段树/树状数组区间更新单点查询+暴力)

    Attack Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others) Total Sub ...

  8. NBOJv2 1050 Just Go(线段树/树状数组区间更新单点查询)

    Problem 1050: Just Go Time Limits:  3000 MS   Memory Limits:  65536 KB 64-bit interger IO format:  % ...

  9. POJ 2155 Matrix (二维线段树入门,成段更新,单点查询 / 二维树状数组,区间更新,单点查询)

    题意: 有一个n*n的矩阵,初始化全部为0.有2中操作: 1.给一个子矩阵,将这个子矩阵里面所有的0变成1,1变成0:2.询问某点的值 方法一:二维线段树 参考链接: http://blog.csdn ...

随机推荐

  1. (模拟)关于进制的瞎搞---You Are Given a Decimal String...(Educational Codeforces Round 70 (Rated for Div. 2))

    题目链接:https://codeforc.es/contest/1202/problem/B 题意: 给你一串数,问你插入最少多少数可以使x-y型机器(每次+x或+y的机器,机器每次只取最低位--% ...

  2. CSS(上)

    目录 CSS(上) 什么是CSS? CSS的优点 CSS的引入方式 行内样式 内部样式 外部样式 CSS的两大特性 CSS选择器 基本选择器 组合选择器 更多选择器 选择器的优先级 CSS(上) 什么 ...

  3. 百度地图 echarts tooltip属性 经纬度坐标不显示

    中国地图.散点图结合点击后显示当前城市数量 不显示经纬度坐标 echarts.appMap = function (id, opt) { // 实例 var chart = this.init(doc ...

  4. Java 子类继承父类成员中的问题

    之前搞错了,变量没有“重写”一说,只有方法才能被“重写”.如果我们在子类中声明了一个和父类中一样的变量,那么实际的情况是,子类的内存堆中会有类型和名字都相同的两个变量. 现在考虑一种情况,如下所示,我 ...

  5. 搭建springCloud网关zuul

    一.pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www ...

  6. ArrayList扩容分析

    一段java代码 String e = "q3234v"; List<String> list = new ArrayList<String>(); for ...

  7. 预约系统(四) 管理页面框架搭建easyUI

    Manage控制器用于管理页面 Index视图为管理页面首页,采用easyUi的后台管理框架 Html头部调用,jquery库,easyui库,easyui.css,icon.css,语言包 < ...

  8. Linux内核、mysql内核、Tcp/Ip内核、java等知识书籍

    LINUX <linux内核设计与实现>(2011年出版,链接:https://pan.baidu.com/s/107hriLNVt05A8egeU8Du-g  密码:0cgn) < ...

  9. 笔记本电脑重装win7/win10系统教程

    由于笔记本第一次重装系统会出现系统装不上,还有出现找不到有效硬盘分区,等等问题,然后这篇文章主要讲解BIOS设置的方法,用此BIOS设置,电脑用原本安装系统的方式,能有效地解决以上问题,这有两种方法解 ...

  10. Gcc 安装过程中部分配置

    Gcc 安装过程中部分配置详解 全文参考<have fun with Gcc>一文,如有需要请联系原作者prolj@163.com 解压gcc源码后,需要进行configure,这时候一般 ...