给定一个长度为N的数列A,以及M条指令,每条指令可能是以下两种之一:

1、“C l r d”,表示把 A[l],A[l+1],…,A[r] 都加上 d。

2、“Q l r”,表示询问 A[l],A[l+1],…,A[r] 的最大公约数(GCD)。

对于每个询问,输出一个整数表示答案。

输入格式

第一行两个整数N,M。

第二行N个整数A[i]。

接下来M行表示M条指令,每条指令的格式如题目描述所示。

输出格式

对于每个询问,输出一个整数表示答案。

每个答案占一行。

数据范围

N≤500000,M≤100000N≤500000,M≤100000

输入样例:

5 5
1 3 5 7 9
Q 1 5
C 1 5 1
Q 1 5
C 3 3 6
Q 2 4

输出样例:

1
2
4

算法:线段树 + 增量数组(树状数组) + 差分序列

题解:

  性质:

  • gcd(a, b) = gcd(a, b - a)
  • gcd(a, b, c) = gcd(a, b - a, c - b)
  • acd(a1, a2, ... , an) = gcd(a1, a2 - a1, ... , an - an-1)

  利用这条性质来求解此题

  1. 对用询问“Q l r”来说,可以求出结果__gcd(arr[l], query(1, l + 1, r),就是同上面的性质,前面那个arr[l]就是性质里面的第一个数,后面的就是存在了线段树里面差分序列,求出(l + 1, r)区间的最大公约数即可。(其中的arr[l]等于原本数组里面的值加上后面更改的值,更改的值记录再树状数组里面)。
  2. 对于询问“C l r d”来说,只需要修改树状数组里面的值,以及线段树里面的值即可。

注意:题目会爆int,需要用long long。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath> using namespace std; typedef long long ll; const int maxn = 5e5+; struct node {
ll l, r;
ll dat;
}tree[maxn << ]; //维护差分序列的线段树 ll n, m;
ll d[maxn]; //差分数组
ll arr[maxn]; //原始数组
ll T[maxn]; //增量数组(树状数组) ll lowbit(ll x) {
return x & (-x);
} void pushup(ll root) {
tree[root].dat = __gcd(tree[root << ].dat, tree[root << | ].dat);
} void build(ll root, ll l, ll r) {
tree[root].l = l;
tree[root].r = r;
if(l == r) {
tree[root].dat = d[l];
return;
}
ll mid = (l + r) >> ;
build(root << , l, mid);
build(root << | , mid + , r);
pushup(root);
} void add(ll x, ll val) {
while(x <= n) {
T[x] += val;
x += lowbit(x);
}
} ll ask(ll x) {
ll res = ;
while(x > ) {
res += T[x];
x -= lowbit(x);
}
return res;
} void update(ll root, ll pos, ll val) {
ll l = tree[root].l;
ll r = tree[root].r;
if(l == r) {
tree[root].dat += val;
return;
}
ll mid = (l + r) >> ;
if(pos <= mid) {
update(root << , pos, val);
} else {
update(root << | , pos, val);
}
pushup(root);
} ll query(ll root, ll x, ll y) {
ll l = tree[root].l;
ll r = tree[root].r;
if(x <= l && r <= y) {
return tree[root].dat;
}
ll mid = (l + r) >> ;
ll res = ;
if(x <= mid) {
res = __gcd(res, query(root << , x, y));
}
if(y > mid) {
res = __gcd(res, query(root << | , x, y));
}
return abs(res); //注意:这里需要加绝对值,因为可能出现负数
} int main() {
scanf("%lld%lld", &n, &m);
for(ll i = ; i <= n; i++) {
scanf("%lld", &arr[i]);
d[i] = arr[i] - arr[i - ]; //构建差分数组
}
build(, , n);
while(m--) {
char str[];
ll l, r, val;
scanf("%s", str);
if(str[] == 'Q') {
scanf("%lld %lld", &l, &r);
ll now = arr[l] + ask(l); //获取当前位置的值(原始数组 + 增量数组)
printf("%lld\n", __gcd(now, query(, l + , r))); //与后面的部分求最大公约数
} else {
scanf("%lld %lld %lld", &l, &r, &val);
add(l, val);
add(r + , -val);
update(, l, val);
if(r < n) { //判断是否会越界
update(, r + , -val);
} }
}
return ;
}

AcWing:246. 区间最大公约数(线段树 + 增量数组(树状数组) + 差分序列)的更多相关文章

  1. AcWing 246. 区间最大公约数

    246. 区间最大公约数 思路: 首先根据更相减损术,我们得到一个结论: \(gcd(a_l, a_{l+1}, ...,a_r) = gcd(a_l, a_{l+1}-a_l, a_{l+2}-a_ ...

  2. 【bzoj3132】上帝造题的七分钟 二维树状数组区间修改区间查询

    题目描述 “第一分钟,X说,要有矩阵,于是便有了一个里面写满了0的n×m矩阵. 第二分钟,L说,要能修改,于是便有了将左上角为(a,b),右下角为(c,d)的一个矩形区域内的全部数字加上一个值的操作. ...

  3. [bzoj3155]Preprefix sum(树状数组)

    3155: Preprefix sum Time Limit: 1 Sec  Memory Limit: 512 MBSubmit: 1183  Solved: 546[Submit][Status] ...

  4. Codeforces 980E The Number Games - 贪心 - 树状数组

    题目传送门 传送点I 传送点II 传送点III 题目大意 给定一颗有$n$个点的树,$i$号点的权值是$2^{i}$要求删去$k$个点,使得剩下的点仍然连通,并且总权值和最大,问删去的所有点的编号. ...

  5. 1082 线段树练习 3 && 树状数组区间修改区间查询

    1082 线段树练习 3 题意: 给定序列初值, 要求支持区间修改, 区间查询 Solution 用树状数组, 代码量小, 空间占用小 巧用增量数组, 修改时在 \(l\) 处 $ + val$ , ...

  6. acwing 243. 一个简单的整数问题2 树状数组 线段树

    地址 https://www.acwing.com/problem/content/description/244/ 给定一个长度为N的数列A,以及M条指令,每条指令可能是以下两种之一: 1.“C l ...

  7. HDU 4031 Attack(线段树/树状数组区间更新单点查询+暴力)

    Attack Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others) Total Sub ...

  8. NBOJv2 1050 Just Go(线段树/树状数组区间更新单点查询)

    Problem 1050: Just Go Time Limits:  3000 MS   Memory Limits:  65536 KB 64-bit interger IO format:  % ...

  9. POJ 2155 Matrix (二维线段树入门,成段更新,单点查询 / 二维树状数组,区间更新,单点查询)

    题意: 有一个n*n的矩阵,初始化全部为0.有2中操作: 1.给一个子矩阵,将这个子矩阵里面所有的0变成1,1变成0:2.询问某点的值 方法一:二维线段树 参考链接: http://blog.csdn ...

随机推荐

  1. MySQL_入手<二>之删--改--查

    接上 上篇文章继续 查询 # 比较运算 # 根据WHERE条件查找数据: = > < >= <= != select * from t_hero where age < ...

  2. 纯CSS实现tag彩色标签

    利用纯CSS实现彩色tag标签,效果如下图 代码如下: .items a:nth-child(9n){background-color: #4A4A4A;} .items a:nth-child(9n ...

  3. Zabbix 系统概述与部署

    Zabbix是一个非常强大的监控系统,是企业级的软件,来监控IT基础设施的可用性和性能.它是一个能够快速搭建起来的开源的监控系统,Zabbix能监视各种网络参数,保证服务器系统的安全运营,并提供灵活的 ...

  4. WPF中Brush类型

    画刷Brush使用 画刷类 SolidColorBrush LinearGradientBrush RadialGradientBrush ImageBrush VisualBrush Drawing ...

  5. EJS学习(五)之EJS的CommonJs规范版本

    EJS的CommonJs规范版本 ejs分为两个版本一个是CommonJs版本,另外一个是AMD规范的版本. 基础:html页面 安装:<script type="text/javas ...

  6. sqlserver2016 management tool v18

    安装完sql server 2016 sp1版本后再安装管理工具v18版本,启动管理工具,启动不起来,自动退出了,没有任何反应. 解决该问题方案: 找到Microsoft.VisualStudio.S ...

  7. 创建Django项目最先做的三件事情(配置文件)

    1.Templates(存放HTML文件的配置)                      <--告诉Django去哪儿找我的HTML文件 2.静态文件(CSS/JS/图片) #静态文件保存目录 ...

  8. 全局捕获异常(适用于SpringMvc,SpringBoot项目)

    @ControllerAdvice 是controller的一个辅助类,最常用的就是作为全局异常处理的切面类.约定了几种可行的返回值,可以返回String字符串,也可以返回ModelAndView,也 ...

  9. linux命令详解——yum

    1.如果不知道确切名字可以:rpm -qa|grep pkgname 2.查看软件安装的文件:rpm -qpl pkgname 3.如果不知道提供某个软件的包是叫什么,可以使用类似下面的写法: yum ...

  10. 模块之time与datetime

    模块之time与datetime import time print (time.clock()) print(time.process_time()) #测量处理器运算时间 print(time.a ...