POJ 1430 Binary Stirling Numbers (第二类斯特林数、组合计数)
题目链接
http://poj.org/problem?id=1430
题解
qaq写了道水题……
在模\(2\)意义下重写一下第二类Stirling数的递推式: $$S(n,m)=S(n-1,m-1)+(S(n-1,m)\ \text{and}\ m)$$
令\(S'(n,m)=S(n+m,m)\), 那么递推式变成了\(S'(n,m)=S'(n,m-1)+(S'(n-1,m)\ \text{and}\ m)\)
也就相当于从\((0,0)\)走到\((n,m)\)的NE Lattice Path数目,且当纵坐标为偶数时只能往上走不能往右走
那这个只能往上走不能往右走就相当于把这一行删掉了(因为对方案没有任何影响),于是保留下来的行只有\([\frac{m-1}{2}]\)个
那么就是从\((0,0)\)走到\((n,[\frac{m-1}{2}])\)的NE Lattice Path条数,直接Lucas定理组合数计算即可
\(m=0\)要特判
时间复杂度\(O(T(\log n+\log m))\).
代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#define llong long long
using namespace std;
inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
}
int comb0(int x,int y) {return x<y?0:1;}
int comb(int x,int y)
{
if(x<2&&y<2) {return comb0(x,y);}
return comb((x>>1),(y>>1))*comb0((x&1),(y&1));
}
int main()
{
int T; scanf("%d",&T);
while(T--)
{
int n,m; scanf("%d%d",&n,&m);
if(m==0) {printf("0\n"); continue;}
n -= m; m = (m-1)>>1;
printf("%d\n",comb(n+m,m));
}
return 0;
}
POJ 1430 Binary Stirling Numbers (第二类斯特林数、组合计数)的更多相关文章
- poj 1430 Binary Stirling Numbers
Binary Stirling Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 1761 Accepted ...
- HDU2643(SummerTrainingDay05-P 第二类斯特林数)
Rank Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- 8-机器分配(hud4045-组合+第二类斯特林数)
http://acm.hdu.edu.cn/showproblem.php?pid=4045 Machine schedulingTime Limit: 5000/2000 MS (Java/Othe ...
- 新疆大学(新大)OJ xju 1006: 比赛排名 第二类斯特林数+阶乘
题目链接:http://acm.xju.edu.cn/JudgeOnline/problem.php?id=1006 第二类斯特林数: 第二类Stirling数实际上是集合的一个拆分,表示将n个不同的 ...
- 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)
[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...
- 【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)
[BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i= ...
- CF932E Team Work(第二类斯特林数)
传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k ...
- HDU - 4625 JZPTREE(第二类斯特林数+树DP)
https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是 ...
- 【CF961G】Partitions 第二类斯特林数
[CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权 ...
随机推荐
- MySQL中文正常而mybatis查询出现乱码的解决方案
解决方案是在spring-mvc.xml文件中,加入 <mvc:annotation-driven> <mvc:message-converters> <bean cla ...
- Antdesign Form 实现页面控件的赋值加载
使用Antdesign Form时,当页面加载时,需要从后台获取数据,对Form中控件的默认赋值.看似比较简单的需求,而且Antdesign 官方文档中也有相应介绍,然后对于Form 的CheckBo ...
- 今天发布MVC项目一直找不到页面
刚开始以为是framwork版本太高,服务器没安装. 后面想到应用池版本忘记选了
- debezium关于cdc的使用(下)
博文原址:debezium关于cdc的使用(下) 简介 debezium在debezium关于cdc的使用(上)中有做介绍.具体可以跳到上文查看.本篇主要讲述使用kafka connector方式来同 ...
- JS常用自定义函数总结
JS常用自定义函数总结 1.原生JavaScript实现字符串长度截取 2.原生JavaScript获取域名主机 3.原生JavaScript清除空格 4.原生JavaScript替换全部 5.原 ...
- Python爬虫之简单爬虫框架实现
简单爬虫框架实现 目录 框架流程 调度器url管理器 网页下载器 网页解析器 数据处理器 具体演示效果 框架流程 调度器 #导入模块 import Url_Manager import parser_ ...
- centos7安装jdk和tomcat
1,先卸载掉openjdk rpm -qa | grep java 卸载 sudo rpm -e --nodeps 加 需要卸载的 或者直接 rpm -e `rpm -qa | grep java` ...
- mysql数据库表名区分大小写
使用mysql的时候,创建的表明都是大写的,但是查询语句中表明用消息就会报错,表不存在. 查询后发现mysql默认配置是表明区分大小写的,如果要修改成不区分大小写,需要修改一下配置. 1.修改MySq ...
- 清除zencart分类页多页后面的&disp_order &sort字符串的方法
在includes\classes\split_page_results.php页面中的function display_links()函数第一行添加如下两行代码即可$parameters=preg_ ...
- jquery判断cookie是否存在
首先请加载jquery库与jquery cookie插件 http://code.jquery.com/jquery-latest.js http://files.cnblogs.com/afish/ ...