CodeChef-----February Challenge 2018---Broken Clock(极坐标+三角函数递推+矩阵快速幂)
链接: https://www.codechef.com/FEB18/problems/BROCLK
Broken Clock Problem Code: BROCLK
Chef has a clock, but it got broken today — the minute hand on Chef's clock doesn't rotate by the angle 2π/3600 each second, but by a different fixed angle x. The coordinates of the center of the clock are (0, 0). The length of the minute hand is l.
One endpoint of the minute hand is always located at the clock center; the other endpoint is initially located at the point (0, l). One second later, Chef observes that this endpoint is at distance d above the x-axis, i.e. the y-coordinate of this endpoint is equal to d.
Chef is curious about where the minute hand will be (specifically, its y-coordinate) after tseconds. Because t can be very large, Chef can't wait for that moment. Please help him!
Input
- The first line of the input contains a single integer T denoting the number of test cases. The description of T test cases follows.
- The first and only line of each test case contains three space-separated integers l, dand t.
Output
We can prove that for the given constraints, the y-coordinate of the end of the minute hand can always be written as a rational number p / q, where gcd(p, q) = gcd(q, 109 + 7) = 1. Let's denote the modular inverse of q (it's guaranteed that the modular inverse exists and is unique) by r.
For each test case, print a single line containing one number (p · r) modulo 109 + 7.
Constraints
- 1 ≤ T ≤ 105
- 1 ≤ d < l ≤ 109
- 1 ≤ t ≤ 1018
Subtasks
Subtask #1 (5 points): t ≤ 3
Subtask #2 (15 points): t is a power of 2, i.e. t = 2p for some p ≥ 0
Subtask #3 (40 points): sum of t over all test cases ≤ 106
Subtask #4 (40 points): original constraints
Example
Input: 3
4 2 1
4 2 2
4 2 3 Output: 2
1000000005
1000000003 贴个代码 吃个教训,在february challenge 期间就传了代码,然后有人直接就这个代码交了,被codechef发邮件通知掉rating了,以后不敢了
#include <bits/stdc++.h>
#define mst(a,b) memset((a),(b), sizeof a)
#define lowbit(a) ((a)&(-a))
#define IOS ios::sync_with_stdio(0);cin.tie(0);
using namespace std;
typedef long long ll;
const int mod=1e9+;
const int maxn=1e6+;
const ll INF = 1LL<<;
const int N=;
ll qpow(ll a,ll b){
ll ret=;
while(b){
if(b&)ret=ret*a%mod;
b>>=;a=a*a%mod;
}
return ret;
}
struct matrix{
ll mat[N][N];
matrix operator*(const matrix&m)const{
matrix tmp;
for(int i=;i<N;++i){
for(int j=;j<N;++j){
tmp.mat[i][j]=;
for(int k=;k<N;++k){
tmp.mat[i][j]+=mat[i][k]*m.mat[k][j]%mod;
tmp.mat[i][j]%=mod;
}
}
}
return tmp;
}
};
void solve(ll d,ll l,ll t,ll&a,ll&b){
ll gg=__gcd(d,l);d/=gg,l/=gg;l%=mod,d%=mod; b=qpow(l,t);--t;
matrix m,ans;
mst(m.mat,);mst(ans.mat,);
for(int i=;i<N;++i)ans.mat[i][i]=;
m.mat[][]=*d%mod;m.mat[][]=-(l*l%mod);
m.mat[][]=;
while(t){
if(t&)ans=ans*m;
t>>=;
m=m*m;
}
a=(ans.mat[][]*d%mod+ans.mat[][]%mod)%mod;
a=(a+mod)%mod;
}
int main(){
#ifdef local
freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
#endif
int t;scanf("%d",&t);
while(t--){
ll d,l,t;scanf("%lld%lld%lld",&l,&d,&t);
ll a,b;solve(d,l,t,a,b);
// cout<<a<<" "<<b<<endl;
printf("%lld\n",l*a%mod*qpow(b,mod-)%mod);
}
return ;
}
搞了好久,一直在想怎么用分数表示一个实数,是自己太傻逼了
用极坐标 (l,ρ)表示点,那么y就等于l*cosρ,题目给你的一秒转角α的cos值是d/l,因此只要求出t秒转过角度的cos值答案就出来啦
所以怎么求cos(tα)嘞?
由于cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
两式相加得cos(A+B)+cos(A-B)=2cosAcosB
所以得到递推式 cos((t+1)α) = 2*cos(tα)cosα - cos((t-1)α)
用矩阵快速幂求出tα的cos值
怎么保证这个分数分子分母是互质的呢,因为递推式里是有分数相减的
先把d和l先除一个gcd(d,l)这样就可以先保证 d,l互质
然后因为分母一直是l的k次方,分子会是d的倍数减去l²的倍数
因为分子分母一开始互质,反证法可以证明分子分母在递推后依旧互质,所以可以大胆取模
得到cos(tα)的分数形式 a/b后,ans就是 l*a*inv(b)=l*a*pow(b,mod-2)
CodeChef-----February Challenge 2018---Broken Clock(极坐标+三角函数递推+矩阵快速幂)的更多相关文章
- CodeChef February Challenge 2018 Broken Clock (三角函数推导 + 矩阵快速幂)
题目链接 Broken Clock 中文题面链接 令$cos(xα) = f(x)$ 根据三角函数变换公式有 $f(x) = \frac{2d}{l} f(x-1) - f(x-2)$ 我们现在 ...
- 2018.10.09 NOIP模拟 路途(递推+矩阵快速幂优化)
传送门 签到题.(考试的时候写挂爆0) 令AiA_iAi表示邻接矩阵的iii次幂. 于是就是求Al+Al+1+...+ArA_l+A_{l+1}+...+A_rAl+Al+1+...+Ar. ...
- codechef February Challenge 2018 简要题解
比赛链接:https://www.codechef.com/FEB18,题面和提交记录是公开的,这里就不再贴了 Chef And His Characters 模拟题 Chef And The Pat ...
- CodeChef February Challenge 2018 Points Inside A Polygon (鸽笼原理)
题目链接 Points Inside A Polygon 题意 给定一个$n$个点的凸多边形,求出$[ \frac{n}{10}]\ $个凸多边形内的整点. 把$n$个点分成$4$类: 横坐标奇, ...
- 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)
传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...
- 2018.10.19 NOIP模拟 硬币(矩阵快速幂优化dp)
传送门 不得不说神仙出题人DZYODZYODZYO出的题是真的妙. f[i][j][k]f[i][j][k]f[i][j][k]表示选的硬币最大面值为iii最小面值不小于jjj,总面值为kkk时的选法 ...
- 2018.08.30 NOIP模拟 kfib(矩阵快速幂+exgcd)
[输入] 一行两个整数 n P [输出] 从小到大输出可能的 k,若不存在,输出 None [样例输入 1] 5 5 [样例输出] 2 [样例解释] f[0] = 2 f[1] = 2 f[2] = ...
- 【2018北京集训十二】 coin 矩阵快速幂
矩阵快速幂原来还可以这么用?? 你们城里人还真会玩. 我们令$f[i][j][k]$表示总的钱数为i,当前使用的最大面值硬币的面值为$v_j$,最小为$v_k$的方案数量. 不难发现$f[i][j][ ...
- Codechef October Challenge 2018 游记
Codechef October Challenge 2018 游记 CHSERVE - Chef and Serves 题目大意: 乒乓球比赛中,双方每累计得两分就会交换一次发球权. 不过,大厨和小 ...
随机推荐
- Nginx与PHP如何协同工作
要说Nginx与PHP如何协同工作,首先得说CGI和FastCGI两个协议. CGI是Web Server与后台语言交互的协议,有了这个协议,开发者可以使用任何语言处理Web Server发来的请求, ...
- 事件循环(EventLoop)的学习总结
前言 在学习eventloop之前,我们需要复习一下js的单线程和异步.虽说js是单线程的,但是在浏览器和Node中都做了相应的处理.如浏览器中的web workers(工作线程),Node中的chi ...
- java springmvc poi 导出Excel,先简单记录,后期会详细描写
POI jar包下载 : http://poi.apache.org/download.html jsp代码 <%@ page language="java" content ...
- ShareSdk等等(三方登录与支付冲突问题)
1.必须实现前两个方法,第三个方法照成支付回调有问题. //必须实现的方法 - (BOOL)application:(UIApplication *)application handleOpenURL ...
- iOS App沙盒目录结构
转自:http://blog.csdn.net/wzzvictory/article/details/18269713 出于安全考虑,iOS系统的沙盒机制规定每个应用都只能访问当前沙盒目录下面的文件( ...
- MySQL安装+Navicat_Premium(安装+破解)+Navicat_Premium中MySQL的localhost不能正常连接+不能连接Docker启动容器中的MySQL
MySQL安装 安装MySQL 我这里安装的是 MySQL 8.0 Command Line Client 下载+安装 详情见 https://www.cnblogs.com/taopanfeng/p ...
- HMC版本支持
Target Version Upgrade From Upgrade Instructions Updates Date Available End of Service Models supp ...
- AIX 6.1创建逻辑卷并挂载【smitty】
1.创建卷组 #mkvg -y datavg hdisk2 hdisk3 #smitty vg
- django笔记二之数据库
django笔记二之数据库 [同步数据库之前的操作] yum install MySQL-python.x86_64 -y 2)开启数据库服务并创建表 创建数据库设置 为utf8: create da ...
- 爬虫笔记八——Scrapy实战项目
(案例一)手机App抓包爬虫 1. items.py import scrapy class DouyuspiderItem(scrapy.Item): # 存储照片的名字 nickName = sc ...