南昌网络赛,是cf的原题

第一次做到这种题,所以认真想了下,每次给一个询问[L,R],要求出这个区间里有2017子序列,但是不能有2016子序列需要删掉的最少元素个数

首先如果我们之询问一小段区间[L,R]那么显然有一个简单的三维dp可以做,状态0|1|2|3|4表示关键字一个也没有,有2,有21,有201,有2017的情况,dp[i][j]表示从状态i转移到状态j最小需要删除的字符

那么显然当s[i]=6时,有dp[3][3]=1,dp[4][4]=1

可以发现,这种状态是很好合并的,对于区间[l,mid]和区间[mid+1,r],设前一半的状态是dp1,后一半的状态是dp2,,两个区间合起来的状态是dp[l][r],那么就有dp1[l][k]+dp2[k][r]=dp[l][r]

所以我们可以直接用分治来求任意一个区间的所有状态复杂度是O(125/6nlogn)因为时间给的多,所以足够快

#include<bits/stdc++.h>
using namespace std;
#define N 200005
#define INF 0x3f3f3f3f
char s[N];
int n,q; void reserve(int l,int r){
int i=l,j=r;
while(i<j){
swap(s[i],s[j]);
++i,--j;
}
} //状态0表示什么都没有,状态1表示2,状态2表示20,状态3表示201,状态4表示2019,dp[i][j]表示从i->j的代价
//因为每段相邻的段状态具有可合并性,想到用线段树分治来维护合并信息,线段树[l,r]维护[l,r]所有状态的代价,合并时类似n^3的区间dp转移
struct Node{
int dp[][];
Node(){
memset(dp,0x3f,sizeof dp);
}
}seg[N<<];
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
Node merge(Node a,Node b){
Node res;
for(int l=;l<;l++)
for(int r=;r<;r++)
for(int k=;k<;k++)
res.dp[l][r]=min(res.dp[l][r],a.dp[l][k]+b.dp[k][r]);
return res;
}
void build(int l,int r,int rt){
if(l==r){
for(int i=;i<;i++)
seg[rt].dp[i][i]=;
if(s[l]==''){
seg[rt].dp[][]=;seg[rt].dp[][]=;
}else if(s[l]==''){
seg[rt].dp[][]=;seg[rt].dp[][]=;
}else if(s[l]==''){
seg[rt].dp[][]=;seg[rt].dp[][]=;
}else if(s[l]==''){
seg[rt].dp[][]=;seg[rt].dp[][]=;
}else if(s[l]==''){
seg[rt].dp[][]=;seg[rt].dp[][]=;
}
return;
}
int m=l+r>>;
build(lson),build(rson);
seg[rt]=merge(seg[rt<<],seg[rt<<|]);
}
Node query(int L,int R,int l,int r,int rt){
if(L<=l && R>=r)return seg[rt];
int m=l+r>>;
Node res;
for(int i=;i<;i++)res.dp[i][i]=;
if(L<=m)res=merge(res,query(L,R,lson));
if(R>m)res=merge(res,query(L,R,rson));
return res;
} int main(){
cin>>n>>q;
scanf("%s",s+);
reserve(,n);
build(,n,);
while(q--){
int L,R;
scanf("%d%d",&L,&R);
L=n-L+;R=n-R+;
Node res=query(R,L,,n,);
if(res.dp[][]==INF)
puts("-1");
else cout<<res.dp[][]<<endl;
}
}

分治维护dp——19南昌网络赛C/cf750E的更多相关文章

  1. 19南昌网络赛L

    校赛打杂没施展开. 题意:一开始给你一颗 (0,0)到(0,l)的树. 这棵树每一年会长出来三个幼芽(雾),长度均为l/4,方向分别是左转60,右转60,和不变. 年份<=14 考虑3^14直接 ...

  2. ACM-ICPC 2019南昌网络赛I题 Yukino With Subinterval

    ACM-ICPC 2019南昌网络赛I题 Yukino With Subinterval 题目大意:给一个长度为n,值域为[1, n]的序列{a},要求支持m次操作: 单点修改 1 pos val 询 ...

  3. dp--2019南昌网络赛B-Match Stick Game

    dp--2019南昌网络赛B-Match Stick Game Xiao Ming recently indulges in match stick game and he thinks he is ...

  4. 2019南昌网络赛I:Yukino With Subinterval(CDQ) (树状数组套主席树)

    题意:询问区间有多少个连续的段,而且这段的颜色在[L,R]才算贡献,每段贡献是1. 有单点修改和区间查询. 思路:46min交了第一发树套树,T了. 稍加优化多交几次就过了. 不难想到,除了L这个点, ...

  5. ACM-ICPC 2019南昌网络赛F题 Megumi With String

    ACM-ICPC 南昌网络赛F题 Megumi With String 题目描述 给一个长度为\(l\)的字符串\(S\),和关于\(x\)的\(k\)次多项式\(G[x]\).当一个字符串\(str ...

  6. 线段树+单调栈+前缀和--2019icpc南昌网络赛I

    线段树+单调栈+前缀和--2019icpc南昌网络赛I Alice has a magic array. She suggests that the value of a interval is eq ...

  7. 南昌网络赛C.Angry FFF Party

    南昌网络赛C.Angry FFF Party Describe In ACM labs, there are only few members who have girlfriends. And th ...

  8. 南昌网络赛 H The Nth Item

    南昌网络赛The Nth Item 暴力快速幂+unordered_map记忆化 注意:记忆化不能写到快速幂求解函数里,不断调用函数会造成很大的时间浪费 #include<bits/stdc++ ...

  9. 2019 ICPC 南昌网络赛

    2019 ICPC 南昌网络赛 比赛时间:2019.9.8 比赛链接:The 2019 Asia Nanchang First Round Online Programming Contest 总结 ...

随机推荐

  1. Python--模块之re

    re模块 就其本质而言,正则表达式(或 RE)是一种小型的.高度专业化的编程语言,(在Python中)它内嵌在Python中,并通过 re 模块实现.正则表达式模式被编译成一系列的字节码,然后由用 C ...

  2. PHP copy() 函数

    定义和用法 copy() 函数复制文件. 该函数如果成功则返回 TRUE,如果失败则返回 FALSE. 语法 copy(file,to_file) 参数 描述 file 必需.规定要复制的文件. to ...

  3. apue 第19章 伪终端

    伪终端是指对于一个应用程序而言,他看上去像一个终端,但事实上它并不是一个真正的终端. 进程打开伪终端设备,然后fork.子进程建立一个新的会话,打开一个相应的伪终端从设备.复制输入.输出和标准错误文件 ...

  4. 让vue用于小程序setData方法

    setData:function(obj){ let that = this; let keys = []; let val,data; Object.keys(obj).forEach(functi ...

  5. 如何用python读写CSV 格式文件

    工作中经常会碰到读写CSV文件的情况.记录下,方便自己以后查询并与大家一起分享: 写CSV文件方法一: import csv          #导入CSV with open("D:\eg ...

  6. 转 Nginx Access Log日志统计分析常用命令

    Nginx Access Log日志统计分析常用命令Nginx Access Log日志统计分析常用命令IP相关统计 统计IP访问量 awk '{print $1}' access.log | sor ...

  7. 这 17 个 JVM 参数,高级 Java 必须掌握!

    作者:SimpleSmile https://www.cnblogs.com/Simple-Object/p/10272326.html前言 大家都知道,jvm在启动的时候,会执行默认的一些参数.一般 ...

  8. python面试题之docstring是什么?

    Docstring是一种文档字符串,用于解释构造的作用.我们在函数.类或方法中将它放在首位来描述其作用.我们用三个单引号或双引号来声明docstring. >>> def sayhi ...

  9. C#关键字扫盲——Tuple(元组类) 、ValueTuple(值元组)

    原文:C#关键字扫盲--Tuple(元组类) .ValueTuple(值元组) 版权声明:本文为博主原创文章,随意转载. https://blog.csdn.net/Michel4Liu/articl ...

  10. 【WPF】一些拖拽实现方法的总结(Window,UserControl)

    原文:[WPF]一些拖拽实现方法的总结(Window,UserControl) 原文地址 https://www.cnblogs.com/younShieh/p/10811456.html 前文 本文 ...