\(T1\)

传送门

解题思路

  傻逼\(dp\)。。直接\(ST\)表处理最大值\(O(n^2)\)艹过了。

代码

#include<bits/stdc++.h>

using namespace std;
const int N=10005; inline int rd(){
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
} int n,k,a[N],f[N],Max[N][15],lg[N]; int query(int l,int r){
int t=lg[r-l+1];
return max(Max[l][t],Max[r-(1<<t)+1][t]);
} int main(){
n=rd(),k=rd();
for(int i=1;i<=n;i++) a[i]=rd(),Max[i][0]=a[i];
for(int i=2;i<=n;i++) lg[i]=lg[i>>1]+1;
for(int j=1;(1<<j)<=n;j++)
for(int i=1;i+(1<<j)-1<=n;i++)
Max[i][j]=max(Max[i][j-1],Max[i+(1<<(j-1))][j-1]);
for(int i=1;i<=n;i++)
for(int j=max(0,i-k);j<i;j++)
f[i]=max(f[i],f[j]+query(j+1,i)*(i-j));
printf("%d\n",f[n]);
return 0;
}

\(T2\)

传送门

解题思路

  傻逼容斥。。用的哈希存状态,刚开始用的取摸哈希,发现冲突率太高,\(WA\)了好几次用自然溢出过了。

代码

#include<bits/stdc++.h>

using namespace std;
const int N=50005;
const int base=66662333;
const int P=131;
typedef long long LL;
typedef unsigned long long ull; inline int rd(){
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
} int n,a[N][7],tp[34];
LL ans;
ull hsh[N][34];
map<ull,int> mp; void prework(int x){
for(int i=1;i<(1<<5);i++){
int num=0;
for(int j=1;j<=5;j++) if((1<<(j-1))&i)
num++,hsh[x][i]=(hsh[x][i]+a[x][j])*base+P;
mp[hsh[x][i]]++;
}
} inline void calc(int x){
for(int i=1;i<(1<<5);i++){
int num=mp[hsh[x][i]];
if(num==1) continue;
mp[hsh[x][i]]=1;
ans+=1ll*tp[i]*num*(num-1)/2;
}
} int main(){
n=rd(); ans=1ll*n*(n-1)/2;
for(int i=1;i<=n;i++){
for(int j=1;j<=5;j++)
a[i][j]=rd();
sort(a[i]+1,a[i]+6);
prework(i);
}
for(int i=1;i<(1<<5);i++)
tp[i]=(__builtin_popcount(i)&1)?(-1):1;
for(int i=1;i<=n;i++) calc(i);
printf("%lld\n",ans);
return 0;
}

\(T3\)

传送门

解题思路

  似乎想了好一会,后来发现可以类似分层图最短路做,把美味值取负数做为点权,设\(dis(i)(0)\)表示没有到过干草棚最短路,\(dis(i)(1)\)表示到过干草棚最短路,转移时随便讨论一下。然后最后如果\(dis(i)(1)<=dis(i)(0)\),说明可行。

代码

#include<bits/stdc++.h>

using namespace std;
const int N=100005;
const int M=200005; inline int rd(){
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
} int n,m,K,head[N],cnt,to[M<<1],nxt[M<<1],val[M<<1];
int dis[N][3],w[N];
bool vis[N];
queue<int> Q; inline void add(int bg,int ed,int w){
to[++cnt]=ed,nxt[cnt]=head[bg],head[bg]=cnt,val[cnt]=w;
} void spfa(){
memset(dis,0x3f,sizeof(dis));
dis[n][0]=0; Q.push(n);
while(Q.size()){
int x=Q.front(); Q.pop(); vis[x]=0;
for(int i=head[x];i;i=nxt[i]){
int u=to[i];
if(dis[x][0]+val[i]<dis[u][0]){
dis[u][0]=dis[x][0]+val[i];
if(!vis[u]) Q.push(u),vis[u]=1;
}
if(w[u] && dis[x][0]+val[i]-w[u]<dis[u][1]){
dis[u][1]=dis[x][0]+val[i]-w[u];
if(!vis[u]) Q.push(u),vis[u]=1;
}
if(dis[x][1]+val[i]<dis[u][1]){
dis[u][1]=dis[x][1]+val[i];
if(!vis[u]) Q.push(u),vis[u]=1;
}
}
}
} int main(){
n=rd(),m=rd(),K=rd(); int x,y,z;
for(int i=1;i<=m;i++){
x=rd(),y=rd(),z=rd();
add(x,y,z),add(y,x,z);
}
for(int i=1;i<=K;i++) x=rd(),w[x]=max(w[x],rd());
if(w[n]) {for(int i=1;i<n;i++) puts("1"); return 0;}
spfa();
for(int i=1;i<n;i++){
if(dis[i][0]>=dis[i][1]) puts("1");
else puts("0");
}
return 0;
}

USACO2018 DEC (Gold) (dp,容斥+哈希,最短路)的更多相关文章

  1. bzoj 3622 DP + 容斥

    LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...

  2. 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 94  Solved: 53 Description 废话不多说,反正小w要发喜 ...

  3. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  4. [LOJ#3119][Luogu5405][CTS2019]氪金手游(DP+容斥)

    先考虑外向树的做法,显然一个点在其子树内第一个出现的概率等于它的权值除以它子树的权值和.于是f[i][j]表示i的子树的权值和为j时,i子树内所有数的相互顺序都满足条件的概率,转移直接做一个背包卷积即 ...

  5. HDU 5838 (状压DP+容斥)

    Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...

  6. Codeforces 611C New Year and Domino DP+容斥

    "#"代表不能放骨牌的地方,"."是可以放 500*500的矩阵,q次询问 开两个dp数组,a,b,a统计横着放的方案数,b表示竖着放,然后询问时O(1)的,容 ...

  7. [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】

    题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...

  8. codeforces 342D Xenia and Dominoes(状压dp+容斥)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud D. Xenia and Dominoes Xenia likes puzzles ...

  9. CF285E Positions in Permutations(dp+容斥)

    题意,给定n,k,求有多少排列是的 | p[i]-i |=1 的数量为k. Solution 直接dp会有很大的后效性. 所以我们考虑固定k个数字使得它们是合法的,所以我们设dp[i][j][0/1] ...

随机推荐

  1. Canvas入门07- 自定义实现虚线的绘制

    预备知识 直线的斜率 一条直线与某平面直角坐标系x轴正半轴方向的夹角的正切值即该直线相对于该坐标系的斜率. 对于一条直线 y = kx +b,k就是直线的斜率. 斜率的计算 对于一条已知的线段,求斜率 ...

  2. 方便测试和调用webservice的工具(转)

    现在很多时候我们都会遇到这种情况:自己开发的程序要和其他各种各样的程序进行接口数据交互,这里就用到常用的接口服务的调用,但是有时候为了进行方便的测试,我们可能会写许多测试类等来测试,这样浪费了时间,也 ...

  3. 简单记事本的基本实现&十四周总结

    JDBC(Java Data Base Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一组用Java语言编写的类和接口 ...

  4. CentOS 8 下 nginx 服务器安装及配置笔记

    参考文档 nginx官方文档 安装 在CentOS下,nginx官方提供了安装包可以安装 首先先安装前置软件 sudo yum install yum-utils 然后将nginx官方源加入到yum源 ...

  5. Luogu P1864 [NOI2009]二叉查找树

    题目 \(v\)表示权值,\(F\)表示频率. 首先我们显然可以把这个权值离散化. 然后我们想一下,这个东西它是一棵树对吧,但是我们改变权值会引起其树形态的改变,这样很不好做,所以我们考虑把它转化为序 ...

  6. python 元组及操作

    # 元组是'不可变'的 list 使用小括号 创建后不允许修改 # 创建# t = ('a','b','c',1,2,3)# print(t)# print(type(t))# # 3# print( ...

  7. Vue-cli3 简qian易yi教程

    原文地址 对于没有了解过 vue-cli3 的童鞋,建议先去看看官方的教程: 传送门 新版本的新特性 1. 插件 使用 cli 的插件,可以很快的搭建一个项目的结构.如 axios 的插件 vue-c ...

  8. 客户端通过url向后端传递参数

    在前端我们不仅可以通过get请求携带参数的方式向服务端传数据: https://127.0.0.1/index/?id=1&name=alex Django也允许通过,path路径的方式向se ...

  9. 利用CSS的translate属性或利用CSS实现图片居中的效果

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. 【转】Hadoop 1.x中fsimage和edits合并实现

    在NameNode运行期间,HDFS的所有更新操作都是直接写到edits中,久而久之edits文件将会变得很大:虽然这对NameNode运行时候是没有什么影响的,但是我们知道当NameNode重启的时 ...