CF1188C Array Beauty(DP)
日常降智。
不过还是第一次和 2700 的题正解这么近呢……
由于排序后不影响答案,而且直觉告诉我们排序后会更好做,不妨排个序。
直觉告诉我们,变成求最小差 \(\ge v\) 的方案数会比最小差 \(=v\) 的方案数好算。
问题就变成如何求最小差 \(\ge v\) 的方案数。
令 \(f_{i,j}\) 表示前 \(i\) 个数中选了 \(j\) 个,且 \(i\) 被选了的方案数。有 \(f_{i,1}=1\)。
转移:\(f_{i,j}=\sum\limits_{a_i-a_k\ge v}f_{k,j-1}\)。
很明显可以前缀和+双指针优化。
时间复杂度 \(O(nka_\max)\)。然后我就自闭了。
%了一发 wqy 的题解,太神了吧……
其实是最小差的最大值达不到 \(a_\max-a_\min\),而只有 \(\frac{a_\max-a_\min}{k-1}\)。(抽屉原理)
复杂度立刻降到 \(O(nk\frac{a_\max}{k-1})=O(na_\max)\)。
看来……会很多的 DP 套路优化,发掘不了性质,还是只能被吊打……
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=1111,mod=998244353;
#define MP make_pair
#define PB push_back
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline ll read(){
char ch=getchar();ll x=0,f=0;
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
int n,k,a[maxn],f[maxn][maxn],s[maxn][maxn],ans;
int main(){
n=read();k=read();
FOR(i,1,n) a[i]=read();
sort(a+1,a+n+1);
FOR(x,1,(a[n]-a[1])/(k-1)){
FOR(i,0,n) FOR(j,0,k) f[i][j]=s[i][j]=0;
FOR(i,1,n) f[i][1]=1,s[i][1]=i;
FOR(j,2,k){
int cur=0;
FOR(i,1,n){
while(cur<i && a[i]-a[cur]>=x) cur++;
if(cur && a[i]-a[cur]<x) cur--;
f[i][j]=s[cur][j-1];
s[i][j]=(s[i-1][j]+f[i][j])%mod;
}
}
ans=(ans+s[n][k])%mod;
}
printf("%d\n",ans);
}
CF1188C Array Beauty(DP)的更多相关文章
- Leetcode之动态规划(DP)专题-474. 一和零(Ones and Zeroes)
Leetcode之动态规划(DP)专题-474. 一和零(Ones and Zeroes) 在计算机界中,我们总是追求用有限的资源获取最大的收益. 现在,假设你分别支配着 m 个 0 和 n 个 1. ...
- LightOJ 1033 Generating Palindromes(dp)
LightOJ 1033 Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...
- lightOJ 1047 Neighbor House (DP)
lightOJ 1047 Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...
- UVA11125 - Arrange Some Marbles(dp)
UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...
- 【POJ 3071】 Football(DP)
[POJ 3071] Football(DP) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4350 Accepted ...
- 初探动态规划(DP)
学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...
- Tour(dp)
Tour(dp) 给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数.请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外 ...
- 2017百度之星资格赛 1003:度度熊与邪恶大魔王(DP)
.navbar-nav > li.active > a { background-image: none; background-color: #058; } .navbar-invers ...
- Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)
Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...
随机推荐
- 物联网架构成长之路(41)-直播流媒体入门(RTSP篇)
1. 搭建RTSP服务 首先现在音视频利器 ffmpeg,这个到http://www.ffmpeg.org/download.html 这里下载压缩包即可. 文档参考:http://trac.ffmp ...
- LeetCode707:设计链表 Design Linked List
爱写bug (ID:iCodeBugs) 设计链表的实现.您可以选择使用单链表或双链表.单链表中的节点应该具有两个属性:val 和 next.val 是当前节点的值,next 是指向下一个节点的指针/ ...
- 九、Spring之BeanFactory源码分析(一)
Spring之BeanFactory源码分析(一) 注意:该随笔内容完全引自https://blog.csdn.net/u014634338/article/details/82865644,写的 ...
- redis之通信协议
Redis 协议将传输的结构数据分为 5 种最小单元类型,单元结束时统一加上回车换行符号\r\n. 1.单行字符串 以 + 符号开头. 2.多行字符串 以 $ 符号开头,后跟字符串长度. 3.整数值 ...
- JavaScript的__proto__、prototype和继承
JavaScript也是可以“继承”的! 各位看官或是好奇,或是一知半解.什么是prototype,__proto__,constructor.哪种继承方式好.今天就在这交流交流. 什么是protot ...
- Asp.NET Core Nginx Ocelot ForwardedHeaders X-Forwarded-For
ocelot在部署时我使用了nginx作为转发,并配置了https证书,但是发现ocelot不支持Forward host header. https://ocelot.readthedocs.io/ ...
- QT+OpenGL(02)-- zlib库的编译
1.zlib库的下载 http://www.zlib.net/ zlib1211.zip 2.解压 3.进入 zlib1211\zlib-1.2.11\contrib\vstudio\vc14 目录 ...
- 实战Rest API接口测试
一.Android App API接口测试 1.如何学好Android App API接口测试 postman可以用来实现API接口自动化测试,但是也有弊端,无法实现接口测试数据的参数化,为了达到接口 ...
- deepin可视化程序打不开问题排查方法
anyconnect是一个VPN软件,在deepin系统下安装完成之后,并不能够直接使用,点击启动图标之后没有反应. 要想分析问题,必须从命令行入手,错误会打印在控制台. 如何根据一个图标来找到一个程 ...
- https申请证书并部署到网站流程,浏览器验证证书流程
https申请证书并部署到网站流程: 1.生成一对秘钥,设公钥为pubk1,私钥为prik12.假设发布的网站地址为https://www.example.com3.生成一个CSR文件(Cerific ...