51Node1228序列求和 ——自然数幂和模板&&伯努利数
伯努利数法
伯努利数原本就是处理等幂和的问题,可以推出
$$ \sum_{i=1}^{n}i^k={1\over{k+1}}\sum_{i=1}^{k+1}C_{k+1}^i*B_{k+1-i}*(n+1)^i $$
因为
$$\sum_{k=0}^nC_{n+1}^kB_k=0(B_0=1)$$
所以
$$ B_n={- {1\over{n+1}}}(C_{n+1}^0B_0+C_{n+1}^1B_1+……C_{n+1}^{n-1}B_{n-1})$$
伯努利数的证明十分复杂,记住即可。
题目
求 $\sum_{i=1}^ni^k \ mod \ (1e9+7)$,$i \leq 10^{18}, k \leq 2000, T \leq 2000$.
分析
直接用上面的公式,预处理伯努利数,时间为为 $O(k^2)$。
有 $O(klogk)$ 的方法求伯努利数,但是比较复杂,以后再学吧。
单次的时间只有 $O(k)$,$T$ 组查询不会超时。
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const ll mod = 1e9 + ;
const int maxk = + ;
ll n, k; ll C[maxk][maxk], inv[maxk], B[maxk];
void init()
{
//预处理组合数
C[][] = ;
for(int i = ;i < maxk;i++)
{
C[i][] = ;
for(int j = ;j <= i;j++)
C[i][j] = (C[i-][j-] + C[i-][j]) % mod;
}
//预处理逆元
inv[] = ;
for(int i = ;i < maxk;i++)
inv[i] = (mod - mod/i) * inv[mod%i] % mod;
//预处理伯努利数
B[] = ;
for(int i = ;i < maxk-;i++)
{
ll tmp = ;
for(int j = ;j < i;j++)
tmp = (tmp + C[i+][j]*B[j]%mod) % mod;
tmp = tmp * (-inv[i+]) % mod;
B[i] = (tmp + mod) % mod;
}
} ll pw[maxk];
ll cal()
{
n %= mod; //想一想为什么可以这样做
pw[] = ;
for(int i = ;i <= k+;i++) pw[i] = pw[i-] * (n+) % mod; ll ret = ;
for(int i = ;i <= k+;i++)
ret = (ret + C[k+][i]*B[k+-i]%mod*pw[i]%mod) % mod;
ret = ret * inv[k+] % mod;
return ret;
} int main()
{
init(); int T;
scanf("%d", &T);
while(T--)
{
scanf("%lld%lld", &n, &k);
printf("%lld\n", cal());
} return ;
}
参考链接:https://blog.csdn.net/acdreamers/article/details/38929067
51Node1228序列求和 ——自然数幂和模板&&伯努利数的更多相关文章
- 51nod1228 序列求和(自然数幂和)
与UVA766 Sum of powers类似,见http://www.cnblogs.com/IMGavin/p/5948824.html 由于结果对MOD取模,使用逆元 #include<c ...
- CF622F——自然数幂和模板&&拉格朗日插值
题意 求 $ \displaystyle \sum_{i=1}^n i^k \ mod (1e9+7), n \leq 10^9, k \leq 10^6$. CF622F 分析 易知答案是一个 $k ...
- 自然数幂和&伯努利数(Bernoulli)
二项式定理求自然数幂和 由二项式定理展开得 \[ (n+1)^{k+1}-n^{k+1}=\binom {k+1}1n^k+\binom {k+1}2n^{k-1}+\cdots+\binom {k+ ...
- 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]
1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...
- UVA766 Sum of powers(1到n的自然数幂和 伯努利数)
自然数幂和: (1) 伯努利数的递推式: B0 = 1 (要满足(1)式,求出Bn后将B1改为1 /2) 参考:https://en.wikipedia.org/wiki/Bernoulli_numb ...
- HDU 2254 奥运(矩阵高速幂+二分等比序列求和)
HDU 2254 奥运(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意: 中问题不解释. 分析: 依据floyd的算法,矩阵的k次方表示这个矩阵走了k步. 所以k ...
- HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)
HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意: g(i)=k*i+b;i为变量. 给出 ...
- 51nod 1228 序列求和(伯努利数)
1228 序列求和 题目来源: HackerRank 基准时间限制:3 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 收藏 关注 T(n) = n^k,S(n) = T(1 ...
- Codeforces 622F The Sum of the k-th Powers ( 自然数幂和、拉格朗日插值法 )
题目链接 题意 : 就是让你求个自然数幂和.最高次可达 1e6 .求和上限是 1e9 分析 : 题目给出了最高次 k = 1.2.3 时候的自然数幂和求和公式 可以发现求和公式的最高次都是 k+1 ...
随机推荐
- Java基础知识点总结(三)
figure:first-child { margin-top: -20px; } #write ol, #write ul { position: relative; } img { max-wid ...
- python学习-35 文件处理
1.简单的打开文件 f=open('test.txt',encoding='utf-8') # 打开了名字为test.txt的文件里的内容 data=f.read() # 读取里面的内容 print( ...
- Django框架(十二)-- 中间件、CSRF跨站请求伪造
中间件 一.什么是中间件 请求的时候需要先经过中间件才能到达django后端(urls,views,templates,models) 响应的时候也需要经过中间件才能到达web服务网关接口 djang ...
- 大数据之路【第十四篇】:数据挖掘--推荐算法(Mahout工具)
数据挖掘---推荐算法(Mahout工具) 一.简介 Apache顶级项目(2010.4) Hadoop上的开源机器学习库 可伸缩扩展的 Java库 推荐引擎(协同过滤).聚类和分类 二.机器学习介绍 ...
- 个人学习笔记:C语言程序结构
个人笔记:C语言程序 函数 语句 输入输出对象 标识符 关键字 函数 一个C语言源程序,是由一个或多个函数定义顺序组成的,其中必须有一个函数名为main的主函数.C语言源程序中的函数是指完成特定数据处 ...
- Windows状态栏图标显示异常
1.新建TXT文档 2.写上以下代码 taskkill /im explorer.exe /f cd /d %userprofile%\appdata\local del iconcache.db / ...
- golang --写test测试用例
安装gotests插件自动生成测试代码: go get -u -v github.com/cweill/gotests/... 如何编写测试用例 由于go test命令只能在一个相应的目录下执行所有文 ...
- HTML5+规范:nativeUI(管理系统原生界面)
nativeUI管理系统原生界面,可用于弹出系统原生提示对话框窗口.时间日期选择对话框.等待对话框等. 1.方法 1.1.actionSheet: 弹出系统选择按钮框 void plus.native ...
- Spring Boot Freemarker特别篇之contextPath【从零开始学Spring Boot
需求缘起:有人在群里@我:请教群主大神一个问题,spring boot + freemarker 怎么获取contextPath 头疼死我了,网上没一个靠谱的 .我就看看之前博客中的 [Spri ...
- 【转载】 C#中decimal.TryParse方法和decimal.Parse方法的异同之处
在C#编程过程中,decimal.TryParse方法和decimal.Parse方法都可以将字符串string转换为decimal类型,但两者还是有区别,最重要的区别在于decimal.TryPar ...