伯努利数法

伯努利数原本就是处理等幂和的问题,可以推出

$$ \sum_{i=1}^{n}i^k={1\over{k+1}}\sum_{i=1}^{k+1}C_{k+1}^i*B_{k+1-i}*(n+1)^i $$

因为

$$\sum_{k=0}^nC_{n+1}^kB_k=0(B_0=1)$$

所以

$$ B_n={- {1\over{n+1}}}(C_{n+1}^0B_0+C_{n+1}^1B_1+……C_{n+1}^{n-1}B_{n-1})$$

伯努利数的证明十分复杂,记住即可。

题目

求 $\sum_{i=1}^ni^k \ mod \ (1e9+7)$,$i \leq 10^{18}, k \leq 2000, T \leq 2000$.

分析

直接用上面的公式,预处理伯努利数,时间为为 $O(k^2)$。

有 $O(klogk)$ 的方法求伯努利数,但是比较复杂,以后再学吧。

单次的时间只有 $O(k)$,$T$ 组查询不会超时。

#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const ll mod = 1e9 + ;
const int maxk = + ;
ll n, k; ll C[maxk][maxk], inv[maxk], B[maxk];
void init()
{
//预处理组合数
C[][] = ;
for(int i = ;i < maxk;i++)
{
C[i][] = ;
for(int j = ;j <= i;j++)
C[i][j] = (C[i-][j-] + C[i-][j]) % mod;
}
//预处理逆元
inv[] = ;
for(int i = ;i < maxk;i++)
inv[i] = (mod - mod/i) * inv[mod%i] % mod;
//预处理伯努利数
B[] = ;
for(int i = ;i < maxk-;i++)
{
ll tmp = ;
for(int j = ;j < i;j++)
tmp = (tmp + C[i+][j]*B[j]%mod) % mod;
tmp = tmp * (-inv[i+]) % mod;
B[i] = (tmp + mod) % mod;
}
} ll pw[maxk];
ll cal()
{
n %= mod;    //想一想为什么可以这样做
pw[] = ;
for(int i = ;i <= k+;i++) pw[i] = pw[i-] * (n+) % mod; ll ret = ;
for(int i = ;i <= k+;i++)
ret = (ret + C[k+][i]*B[k+-i]%mod*pw[i]%mod) % mod;
ret = ret * inv[k+] % mod;
return ret;
} int main()
{
init(); int T;
scanf("%d", &T);
while(T--)
{
scanf("%lld%lld", &n, &k);
printf("%lld\n", cal());
} return ;
}

参考链接:https://blog.csdn.net/acdreamers/article/details/38929067

51Node1228序列求和 ——自然数幂和模板&&伯努利数的更多相关文章

  1. 51nod1228 序列求和(自然数幂和)

    与UVA766 Sum of powers类似,见http://www.cnblogs.com/IMGavin/p/5948824.html 由于结果对MOD取模,使用逆元 #include<c ...

  2. CF622F——自然数幂和模板&&拉格朗日插值

    题意 求 $ \displaystyle \sum_{i=1}^n i^k \ mod (1e9+7), n \leq 10^9, k \leq 10^6$. CF622F 分析 易知答案是一个 $k ...

  3. 自然数幂和&伯努利数(Bernoulli)

    二项式定理求自然数幂和 由二项式定理展开得 \[ (n+1)^{k+1}-n^{k+1}=\binom {k+1}1n^k+\binom {k+1}2n^{k-1}+\cdots+\binom {k+ ...

  4. 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]

    1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...

  5. UVA766 Sum of powers(1到n的自然数幂和 伯努利数)

    自然数幂和: (1) 伯努利数的递推式: B0 = 1 (要满足(1)式,求出Bn后将B1改为1 /2) 参考:https://en.wikipedia.org/wiki/Bernoulli_numb ...

  6. HDU 2254 奥运(矩阵高速幂+二分等比序列求和)

    HDU 2254 奥运(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意:  中问题不解释. 分析:  依据floyd的算法,矩阵的k次方表示这个矩阵走了k步.  所以k ...

  7. HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)

    HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意:  g(i)=k*i+b;i为变量.  给出 ...

  8. 51nod 1228 序列求和(伯努利数)

    1228 序列求和  题目来源: HackerRank 基准时间限制:3 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  关注 T(n) = n^k,S(n) = T(1 ...

  9. Codeforces 622F The Sum of the k-th Powers ( 自然数幂和、拉格朗日插值法 )

    题目链接 题意 : 就是让你求个自然数幂和.最高次可达 1e6 .求和上限是 1e9 分析 :  题目给出了最高次 k = 1.2.3 时候的自然数幂和求和公式 可以发现求和公式的最高次都是 k+1 ...

随机推荐

  1. 028 SSM综合练习04--数据后台管理系统--订单相关操作

    1.订单表及其关联表的关系分析 2.数据库表对应实体类 (1)Orders.java package lucky.domain; import lucky.utils.DateUtils; impor ...

  2. Centos7 yum方式安装MySQL

    1.下载安装源 wget -i -c http://dev.mysql.com/get/mysql57-community-release-el7-10.noarch.rpm 2.yum方式安装 yu ...

  3. DRF框架(三)——media资源路径设置、多表设计复习及补充、序列化组件(ModelSerializer)操作多表(序列化与反序列化)、多表序列化与反序列化整合(重点)

    media资源路径设置  (设置好后把图片放在这个文件夹中,通过链接能访问到图片) 1.先在根目录设置一个media文件夹 2.配置settings.py,加上下面的 MEDIA_URL = '/me ...

  4. 【题解】Luogu P5358 [SDOI2019]快速查询

    原题传送门 神鱼说这道题是强制离线(smog 我们珂以把被单点修改,单点查询的点单独拿出来处理,把每个数表示成\(mul*x+plus\) 初始状态下\(mul=1,plus=0\) 操作1:在总和中 ...

  5. 【2】【典型一维动态规划】【剑指offer+leetcode53】连续子数组的最大和

    HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学.今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决.但是,如果向量中包含负数 ...

  6. 24H玩转 Grafana 被工程师称相当专业,如何做到?

    国庆假期发生了两件小事,其一是我默默度过 35 周岁生日,其二是玩了下grafana `并在节后第一天被工程师 M 称赞:相当专业. 1.我为什么要玩 grafana 呢? 数月前我提交了一份数据后台 ...

  7. zookeeper+kafka集群的安装

    时效性要求很高的数据,库存,采取的是数据库+缓存双写的技术方案,也解决了双写的一致性的问题 缓存数据生产服务,监听一个消息队列,然后数据源服务(商品信息管理服务)发生了数据变更之后,就将数据变更的消息 ...

  8. Redis 多级缓存架构和数据库与缓存双写不一致问题

    采用三级缓存:nginx本地缓存+redis分布式缓存+tomcat堆缓存的多级缓存架构 时效性要求非常高的数据:库存 一般来说,显示的库存,都是时效性要求会相对高一些,因为随着商品的不断的交易,库存 ...

  9. drf中的各种view,viewset

    drf中的各种view,viewset Django REST framework里有各种各样的view,让我有点蒙,得好好捋一捋这关系. 视图的作用 Django用"视图"这个概 ...

  10. 让js中的函数只有一次有效调用

    设置隐藏域~ <input type="hidden" value="1" id="flag" /> 其它三种方法