dp的平行四边形优化
先来看一道题目:
有 \(n\) 堆石子排成一行,第 \(i\) 堆有 \(a_i\) 个石子每次选择相邻的两堆石子,将其合并为一堆,记录该次合并的得分为两堆石子个数之和。已知每堆石子的石子个数,求当所有石子合并为一堆时,最小的总得分。
区间DP模板题。设 \(dp(i,j)\) 为区间 \([i,j]\) 的最小得分,则状态转移方程为:
\]
code:
#include<bits/stdc++.h>
using namespace std;
const int inf=1<<30;
int dp[1005][1005],a[1005],sum[1005]; //sum[]数组为a[]数组的前缀和,这样就能快速求出∑a_s(i<=s<=j)。
int main()
{
int n,i,j,k,s;
scanf("%d",&n);
for(i=1;i<=n;i++) dp[i][i]=0;
sum[0]=0;
for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
sum[i]=sum[i-1]+a[i];
}
for(k=1;k<n;k++)
{
for(i=1;i<=n-k;i++)
{
j=i+k;
dp[i][j]=inf;
for(s=i;s<j;s++)
dp[i][j]=min(dp[i][j],dp[i][s]+dp[s+1][j]+sum[j]-sum[i-1]);
}
}
printf("%d\n",dp[1][n]);
return 0;
}
容易看出,上面的代码时间复杂度为 \(O(n^3)\),数据一旦大一点,就会导致 TLE。
怎么办呢?我们来看代码的循环部分:
for(k=1;k<n;k++)
{
for(i=1;i<=n-k;i++)
{
j=i+k;
dp[i][j]=inf;
for(s=i;s<j;s++)
dp[i][j]=min(dp[i][j],dp[i][s]+dp[s+1][j]+sum[j]-sum[i-1]);
}
}
前两层循环枚举距离和起点,无法优化,但是第三层循环寻找断点是可以优化的。怎么做呢?
可以再开一个 \(s\) 数组来记录每个区间的最优断点,然后变量 \(k\) (寻找断点)每次只从 \(s(i,j-1)\) 循环到 \(s(i+1,j)\),这样时间复杂度可以从 \(O(n^3)\) 降到近似 \(O(n^2)\)。
如何证明这样的循环来找断点是对的呢?
见下:(Edited by charliezhi2007)
DP的平行四边形不等式证明,m[i][j]即为dp[i][j],s[i][j]表示i~j的最优化断点。
设a , b , c , d(a<=b<=c<=d) //结论是两边之和大于第三边(四边形)
m(a,c) + m(b,d) <= m(a,d) + m(b,c) //四边形对边相等
s[ i ][j-1] <= s[ i ][ j ] <= s[i+1][ j ]
s[ i ][ j ]<=s[i+1][ j ]思考
d=s[ i ][ j ] ,i < i + 1 <= k < d k<-[ i , j ] //设d为断点位置,假设k小于d,k为i,j中任意断点
mk(i,j) = m(i,k) + m(k + 1,j) + sum(i,j) //表示以k为断点i,j合并的代价 sum是i到j所有值得和
md(i,j) = m(i,d) + m(d + 1,j) + sum(i,j) //表示以d为断点i,j合并的代价(代价最小)
mk(i,j) >= md(i,j) > 0 //d为断点将i,j合并的代价最小因为d是最优断点
=> mk(i,j) - md(i,j) > 0
(mk(i + 1,j) - md(i + 1,j)) - (mk(i,j) - md(i,j)) //判断k>d 或 d>k因为上面假设k<d要证明
=(mk(i + 1,j) + md(i,j)) - (md(i + 1,j) + mk(i,j)) //将系数为负数的项,系数为正数的项放在一起
= (m(i + 1,k) + m(k + 1,j) + m(i,d) + m(d + 1,j) + sum(i,j) + sum(i + 1,j))
- (m(i + 1,d) + m(k + 1,j) + m(i,k) + m(k + 1,j)+ sum(i,j) + sum(i + 1,j)) //将式子展开
=>将减号两边的m(k + 1,j) 和 m(d + 1,j) 和 sum(i,j) 和 sum(i + 1,j)相互消元
=(m(i + 1,k) + m(i,d)) - (m(i + 1,d) + m(i,k))
=> i<i + 1<k <d = a <b <c <d //两式变量相等
=>(m(i + 1,k) + m(i,d)) - (m(i + 1,d) + m(i,k)) = (m(b,c) + m(a,d)) - (m(b,d) + m(a,c)) >0 //因ad+bc>=ac+bd所以该式大于0
=>(mk(i + 1,j) - md(i + 1,j)) - (mk(i,j) - md(i,j)) >0 //则这个也大于0
因d<=b 则b=s[i + 1][ j ]
下面求s[ i ][j-1]的思路于上面一致,则最终得出k∈[s[ i ][j-1] , s[i-1][ j ]]。
通过上述推论,可得出 \(s(i,j-1)\leq s(i,j)\leq s(i+1,j)\),再经过一波分析,可得出 \(s(i+1,j)-s(i,j-1)\) 小到几乎可以忽略不计,所以上述程序的复杂度降到了 \(O(n^2)\)。
献上丑陋AC代码:
#include<bits/stdc++.h>
using namespace std;
const int inf=1<<30;
int dp[1005][1005],a[1005],sum[1005],s[1005][1005];
int main()
{
int n,i,j,k,ss;
scanf("%d",&n);
for(i=1;i<=n;i++)
{
dp[i][i]=0;
s[i][i]=i;
}
sum[0]=0;
for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
sum[i]=sum[i-1]+a[i];
}
for(k=1;k<n;k++)
{
for(i=1;i<=n-k;i++)
{
j=i+k;
dp[i][j]=inf;
for(ss=s[i][j-1];ss<=s[i+1][j];ss++)
{
if(dp[i][ss]+dp[ss+1][j]+sum[j]-sum[i-1]<dp[i][j])
{
dp[i][j]=dp[i][ss]+dp[ss+1][j]+sum[j]-sum[i-1];
s[i][j]=ss;
}
}
}
}
printf("%d\n",dp[1][n]);
return 0;
}
dp的平行四边形优化的更多相关文章
- HDU3480_区间DP平行四边形优化
HDU3480_区间DP平行四边形优化 做到现在能一眼看出来是区间DP的问题了 也能够知道dp[i][j]表示前 i 个节点被分为 j 个区间所取得的最优值的情况 cost[i][j]表示从i ...
- 蓝桥杯:合并石子(区间DP+平行四边形优化)
http://lx.lanqiao.cn/problem.page?gpid=T414 题意:…… 思路:很普通的区间DP,但是因为n<=1000,所以O(n^3)只能拿90分.上网查了下了解了 ...
- 51 nod 石子归并 + v2 + v3(区间dp,区间dp+平行四边形优化,GarsiaWachs算法)
题意:就是求石子归并. 题解:当范围在100左右是可以之间简单的区间dp,如果范围在1000左右就要考虑用平行四边形优化. 就是多加一个p[i][j]表示在i到j内的取最优解的位置k,注意能使用平行四 ...
- [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)
DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...
- dp的斜率优化
对于刷题量我觉得肯定是刷的越多越好(当然这是对时间有很多的人来说. 但是在我看来我的确适合刷题较多的那一类人,应为我对知识的应用能力并不强.这两天学习的内容是dp的斜率优化.当然我是不太会的. 这个博 ...
- HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化
HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...
- DP的四边形优化
DP的四边形优化 一.进行四边形优化需要满足的条件 1.状态转移方程如下: m(i,j)表示对应i,j情况下的最优值. w(i,j)表示从i到j的代价. 例如在合并石子中: m(i,j)表示从第i堆石 ...
- CSP 201612-4 压缩编码 【区间DP+四边形不等式优化】
问题描述 试题编号: 201612-4 试题名称: 压缩编码 时间限制: 3.0s 内存限制: 256.0MB 问题描述: 问题描述 给定一段文字,已知单词a1, a2, …, an出现的频率分别t1 ...
- Codevs 3002 石子归并 3(DP四边形不等式优化)
3002 石子归并 3 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次 ...
随机推荐
- 冰多多团队-第一次Scrum例会
冰多多团队-第一次Scrum会议 注:由于对课程要求的不熟悉,所以本文档为周会后的补充总结文档 会议基本情况 会议时间:3.28 19:00 - 19:30 会议地点:新主楼F座2楼沙发休息处 工作情 ...
- SpringBoot(十五):SpringBoot2.x集成eureka实现注高可用册中心,高可用的服务器提供者,以及消费者示例
本文代码请参考<https://github.com/478632418/springcloud-eureka-server-client/tree/master/mall>.<ht ...
- Java一行代码
1.整数格式化成0X 的形式字符串 String hour=String.format("%02d", txtWaringTime.getCurrentHour()); Strin ...
- 019 spring social
1.原理 2. 3. 4.
- Java基础 awt Graphics2D 生成矩形图片并向其中画一条直线
JDK :OpenJDK-11 OS :CentOS 7.6.1810 IDE :Eclipse 2019‑03 typesetting :Markdown code ...
- MQTT研究之EMQ:【EMQX使用中的一些问题记录(2)】
我的测试环境: Linux: CentOS7 EMQX:V3.2.3 题外话: 这里主要介绍Websocket的支持问题. 对ws的支持比较正常,但是对wss的支持,调了较长的时间,没有成功. Jav ...
- bootstrap datetimepicker 添加清空按钮
<div class="ys-datetimepicker"> <input class="form-control" size=" ...
- shell基础知识4--别名、采集终端信息
别名就是一种便捷方式,可以为用户省去输入一长串命令序列的麻烦.下面我们会看到如何 使用 alias 命令创建别名. 直接使用alias就是显示当前有哪些别名,否则就是创建别名 [root@dns-no ...
- 【软件工具】ImageMagick
如何安装; 如何检查是否安装成功呢: 如何使用: https://imagemagick.org/index.php 参考 1. 官网: 完
- express脚手架重建node项目
安装express 和express-generator cnpm install express express-generator -g express demo1 创建demo1项目, 进入项目 ...