https://www.cnblogs.com/31415926535x/p/11460682.html

上午没课,做一套题,,练一下手感和思维,,教育场的71 ,,前两到没啥,,后面就做的磕磕巴巴的,,,有想法但是不敢实现,,自我否定,,没了思路就只能官方题解,,发现其实都很简单,,,思维场把,,,,

A There Are Two Types Of Burgers

贪心就完事了,,推出公式不知道怎么证明是最优的,,,(敲错变量还wale一发emmm

#include <bits/stdc++.h>
#define aaa cout<<233<<endl;
#define endl '\n'
#define pb push_back
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
// mt19937 rnd(time(0));
const int inf = 0x3f3f3f3f;//1061109567 > 1e9
const ll linf = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-7;
const double pi = 3.14159265358979;
const int maxn = 1e5 + 5;
const int maxm = 1e3 + 5;
const int mod = 1e9 + 7; int main()
{
// double pp = clock();
// freopen("233.in", "r", stdin);
// freopen("233.out", "w", stdout);
ios_base::sync_with_stdio(0);
cin.tie(0);cout.tie(0); int t; cin >> t;
while(t--)
{
int b, p, f;
cin >> b >> p >> f;
int h, c;
cin >> h >> c;
int ans = 0;
if(h < c)
{
ans = c * (min(f, b / 2));
b -= 2 * min(f, b / 2);
ans += h * (min(p, b / 2));
}
else
{
ans = h * min(p, b / 2);
b -= 2 * min(p, b / 2);
ans += c * min(f, b / 2);
}
cout << ans << endl; } // cout << endl << (clock() - pp) / CLOCKS_PER_SEC << endl;
return 0;
}

B Square Filling

题意就是给你一个矩形,,由0,1组成,然后一次可以进行一个操作:把 \((x, y), (x, y + 1), (x + 1, y), (x + 1, y + 1)\) 这几个点变成1,,然后问你从一个全零的矩阵变成这个矩阵的操作方法,,没限制操作次数,,那就乱搞就行了,,

#include <bits/stdc++.h>
#define aaa cout<<233<<endl;
#define endl '\n'
#define pb push_back
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
// mt19937 rnd(time(0));
const int inf = 0x3f3f3f3f;//1061109567 > 1e9
const ll linf = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-7;
const double pi = 3.14159265358979;
const int maxn = 1e3 + 5;
const int maxm = 1e3 + 5;
const int mod = 1e9 + 7; int a[maxn][maxn];
vector<pair<int, int> > ans;
bool check(int x, int y)
{
if(a[x][y] && a[x][y + 1] && a[x + 1][y] && a[x + 1][y + 1])return true;
return false;
}
int main()
{
// double pp = clock();
// freopen("233.in", "r", stdin);
// freopen("233.out", "w", stdout);
ios_base::sync_with_stdio(0);
cin.tie(0);cout.tie(0); int n, m;cin >> n >> m;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
cin >> a[i][j]; for(int i = 1; i <= n; ++i)
{
for(int j = 1; j <= m; ++j)
{
if(!a[i][j])continue;
if(check(i, j))ans.push_back(make_pair(i, j));
else if(check(i, j - 1))ans.push_back(make_pair(i, j - 1));
else if(check(i - 1, j))ans.push_back(make_pair(i - 1, j));
else if(check(i - 1, j - 1))ans.push_back(make_pair(i - 1, j - 1));
else
{
cout << -1 << endl;
return 0;
}
}
}
sort(ans.begin(), ans.end());
int size = unique(ans.begin(), ans.end()) - ans.begin();
cout << size << endl;
for(int i = 0; i < size; ++i)cout << ans[i].first << " " << ans[i].second << endl; // cout << endl << (clock() - pp) / CLOCKS_PER_SEC << endl;
return 0;
}

C Gas Pipeline

dp?! 没怎么训练过dp,,暂时扔了,,

D Number Of Permutations

感觉这道题不错,,

题意就是对于给你的一个二元对 序列s,,他的排列中任意一维满足不递减的排列就是 坏的排列,问你所有的排列中好的共有几种,,

一开始被tag的组合吓懵了,,以为是什么推公式的排列组合题,,

其实解法很简单,,考虑反面就行了,,,总的排列的情况一共有 \(fac[n]\) 种,,然后对于第一维不递减的排列的个数记为 \(cnt_1\) ,同理第二维的就是 \(cnt_2\) ,,根据容斥的思想,,还有它俩的交集 \(cnt_{12}\) ,,最后他们的答案就是 \(fac[n] - cnt_1 - cnt_2 + cnt_{12}\) ,,,

前两种的求法就是排序后,,如果没有重复的元素,那就就是一种情况,,如果有重复的元素,,那么就是重复元素的阶乘的积,,

对于最后这种交集的情况,首先要按第一维排序,如果第一维相等,按第二维排序,,,然后判断第二维是不是不递减的,,如果不是不递减的,,那么这种情况就是0种,,否者的话,,对于那些相同的二元对就可以互换位置,,那么答案就是他们的阶乘的积,,

最后统计答案就行了,,记得多加几个模,,因为前两种的情况可能很多,,,emmmm,,,wa了好几发,,,

#include <bits/stdc++.h>
#define aaa cout<<233<<endl;
#define endl '\n'
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
// mt19937 rnd(time(0));
const int inf = 0x3f3f3f3f;//1061109567 > 1e9
const ll linf = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-7;
const double pi = 3.14159265358979;
const int maxn = 3e5 + 5;
const int maxm = 1e3 + 5;
// const int mod = 1e9 + 7;
const int mod = 998244353; pair<int, int> a[maxn];
bool cmpab(pair<int, int> i, pair<int, int> j)
{
if(i.first == j.first)return i.second < j.second;
return i.first < j.first;
}
bool cmpb(pair<int, int> i, pair<int, int> j)
{
return i.second < j.second;
}
ll fac[maxn];
void init()
{
fac[0] = fac[1] = 1;
for(int i = 2; i < maxn; ++i)fac[i] = fac[i - 1] * i % mod;
}
int main()
{
// double pp = clock();
// freopen("233.in", "r", stdin);
// freopen("233.out", "w", stdout);
ios_base::sync_with_stdio(0);
cin.tie(0);cout.tie(0); int n; cin >> n;
for(int i = 1; i <= n; ++i)cin >> a[i].first >> a[i].second;
sort(a + 1, a + 1 + n, cmpab);
ll cnt1, cnt2, cnt12;
cnt1 = cnt2 = cnt12 = 1;
init();
for(int i = 1; i <= n; ++i)
{
int l = i, r = n;
int k = i;
while(l <= r)
{
int mid = l + r >> 1;
if(a[mid].first == a[i].first)
{
l = mid + 1;
k = mid;
}
else
{
r = mid - 1;
}
}
cnt1 = cnt1 * fac[k - i + 1] % mod;
i = k;
}
bool flag = true;
for(int i = 1; i <= n; ++i)if(a[i].second < a[i - 1].second)flag = false;
if(flag)
{
for(int i = 1; i <= n; ++i)
{
int l = i, r = n;
int k = i;
while(l <= r)
{
int mid = l + r >> 1;
if(a[mid].first == a[i].first && a[mid].second == a[i].second)
{
l = mid + 1;
k = mid;
}
else
{
r = mid - 1;
}
}
cnt12 = cnt12 * fac[k - i + 1] % mod;
i = k;
}
}
else
{
cnt12 = 0;
} sort(a + 1, a + 1 + n, cmpb);
for(int i = 1; i <= n; ++i)
{
int l = i, r = n;
int k = i;
while(l <= r)
{
int mid = l + r >> 1;
if(a[mid].second == a[i].second)
{
l = mid + 1;
k = mid;
}
else
{
r = mid - 1;
}
}
cnt2 = cnt2 * fac[k - i + 1] % mod;
i = k;
}
// cout << fac[n] << " " << cnt1 << " " << cnt2 << " " << cnt12 << endl;
if(n != 1)cout << (fac[n] - cnt1 - cnt2 + cnt12 + mod * 2) % mod << endl;
else cout << 0 << endl; // cout << endl << (clock() - pp) / CLOCKS_PER_SEC << endl;
return 0;
}

E XOR Guessing

一道简单的交互题,,,

题意就是你有两次询问机会,,每次询问是100 个数,,然后交互器会选择一个数和答案 \(x\) 的异或作为输入给你,,最后你要得出答案那个数,,,

看到异或,第一反应就是位运算相关的,,,往上靠就行了,,只有两次机会的话,,而且书的范围是14位内的正整数,,,所以考虑第一次询问 \(x\) 的高7位,,后一次询问低7位,,,然后将得到的值掐掉前面的低7位,,“并” 上后面掐掉高7位的值就行了,,,

忘记将 #define '\n' endl 注释ile了一发,,,emmmmm

#include <bits/stdc++.h>
#define aaa cout<<233<<endl;
// #define endl '\n'
#define pb push_back
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
// mt19937 rnd(time(0));
const int inf = 0x3f3f3f3f;//1061109567 > 1e9
const ll linf = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-7;
const double pi = 3.14159265358979;
const int maxn = 1e3 + 5;
const int maxm = 1e3 + 5;
const int mod = 1e9 + 7; int main()
{
// double pp = clock();
// freopen("233.in", "r", stdin);
// freopen("233.out", "w", stdout);
ios_base::sync_with_stdio(0);
cin.tie(0);cout.tie(0); cout << "? ";
for(int i = 1; i <= 100; ++i)cout << i << " ";cout << endl;fflush(stdout);
ll a; cin >> a;
cout << "? ";
for(int i = 1; i <= 100; ++i)cout << (i << 7) << " "; cout << endl;fflush(stdout);
ll b; cin >> b;
// cout << a << b << endl;
a = a & (0b11111110000000);
b = b & (0b00000001111111);
cout << "! " << (a | b) << endl;fflush(stdout); // cout << endl << (clock() - pp) / CLOCKS_PER_SEC << endl;
return 0;
}

F Remainder Problem

这题也不错,,

题意就是一个长为500000的数组,,一个操作是对 第x位 a[x] += y;另一种操作是询问所有 模x余数为y位置处的数的和,,,

自己想的做法T了,,,因为没有想到 修改一个数他所会影响的可能询问该怎么表示,,,,

这题的解法是: 用一个数组 \(sum[x][y]\) 保存模为x时余数时y的答案,,因为当模数很大时,,我们即使时暴力找,,因为这时的数很少,,,所以询问不怎么费时间,,,但是数小时,,,寻找的数就很多,,,这样就会T,,,所以我们只保存前750个模数的答案,,,

每次修改一个数 \(a[x] += y\) 后,,,对于所有 \(sum[i][x \% i]\) 都会产生影响,,,这里的i就是模数,,,\(x \% i\) 相当于是这个模数下的余数,,当询问 \((2, i, x \% i)\) 时,,,这个答案就可以直接得到,,,

比如说我修改 a[7] 的值,,那么对于一个询问 \((x, y)={(3, 1), (4, 3), (5, 2)......}\) 这些询问的值一定会改变,,,也就是对 \(sum[3][1], sum[4][7 \% 4], sum[5][7 \% 5]\) 进行了修改,,

思路理清代码就简单了,,,

#include <bits/stdc++.h>
#define aaa cout<<233<<endl;
#define endl '\n'
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
// mt19937 rnd(time(0));
const int inf = 0x3f3f3f3f;//1061109567 > 1e9
const ll linf = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-7;
const double pi = 3.14159265358979;
const int maxn = 5e5 + 5;
const int maxm = 1e3 + 5;
const int mod = 1e9 + 7; int a[maxn];
const int k = 750;
int sum[k][k];
int main()
{
// double pp = clock();
// freopen("233.in", "r", stdin);
// freopen("233.out", "w", stdout);
ios_base::sync_with_stdio(0);
cin.tie(0);cout.tie(0); int q; cin >> q;
int o, x, y;
while(q--)
{
cin >> o >> x >> y;
if(o == 1)
{
a[x] += y;
for(int i = 1; i < k; ++i)sum[i][x % i] += y;
}
else
{
if(x >= k)
{
int ans = 0;
for(int i = y; i <= 500000; i += x)ans += a[i];
cout << ans << endl;
}
else
{
cout << sum[x][y] << endl;
} } } // cout << endl << (clock() - pp) / CLOCKS_PER_SEC << endl;
return 0;
}

G Indie Album

貌似是AC自动机的题,,,没开字符串的专题,,先扔了,,,

(end...)

Educational Codeforces Round 71的更多相关文章

  1. Educational Codeforces Round 71 (Rated for Div. 2)-F. Remainder Problem-技巧分块

    Educational Codeforces Round 71 (Rated for Div. 2)-F. Remainder Problem-技巧分块 [Problem Description] ​ ...

  2. Educational Codeforces Round 71 (Rated for Div. 2)-E. XOR Guessing-交互题

    Educational Codeforces Round 71 (Rated for Div. 2)-E. XOR Guessing-交互题 [Problem Description] ​ 总共两次询 ...

  3. Educational Codeforces Round 71 (Rated for Div. 2)E. XOR Guessing

    一道容斥题 如果直接做就是找到所有出现过递减的不同排列,当时硬钢到自闭,然后在凯妹毁人不倦的教导下想到可以容斥做,就是:所有的排列设为a,只考虑第一个非递减设为b,第二个非递减设为c+两个都非递减的情 ...

  4. Educational Codeforces Round 71 (Rated for Div. 2) E XOR Guessing (二进制分组,交互)

    E. XOR Guessing time limit per test1 second memory limit per test256 megabytes inputstandard input o ...

  5. [暴力] Educational Codeforces Round 71 (Rated for Div. 2) B. Square Filling (1207B)

    题目:http://codeforces.com/contest/1207/problem/B   B. Square Filling time limit per test 1 second mem ...

  6. [贪心,dp] Educational Codeforces Round 71 (Rated for Div. 2) C. Gas Pipeline (1207C)

    题目:http://codeforces.com/contest/1207/problem/C   C. Gas Pipeline time limit per test 2 seconds memo ...

  7. Educational Codeforces Round 71 (Rated for Div. 2)

    传送门 A.There Are Two Types Of Burgers 签到. B.Square Filling 签到 C.Gas Pipeline 每个位置只有"高.低"两种状 ...

  8. Educational Codeforces Round 71 (Rated for Div. 2) Solution

    A. There Are Two Types Of Burgers 题意: 给一些面包,鸡肉,牛肉,你可以做成鸡肉汉堡或者牛肉汉堡并卖掉 一个鸡肉汉堡需要两个面包和一个鸡肉,牛肉汉堡需要两个面包和一个 ...

  9. Remainder Problem(分块) Educational Codeforces Round 71 (Rated for Div. 2)

    引用:https://blog.csdn.net/qq_41879343/article/details/100565031 下面代码写错了,注意要上面这种.查:2  800  0,下面代码就错了. ...

随机推荐

  1. AJax和JQ的结合使用

    第一种经典模式 <%-- Created by IntelliJ IDEA. User: 60590 Date: 2019/12/4 Time: 16:08 To change this tem ...

  2. jedis的连接池

    1.需要先打开虚拟机,并开启Linux系统的端口号:6379: 其中,第一行代码为修改字符编码格式,解决SSH中文乱码问题. 2.开启redis: 3.利用连接池实现数据的存取: (1)代码实现: i ...

  3. 使用rbenv 进行ruby 多版本的管理

    今天需要安装一个ruby 包,但是ruby 版本过低,以前使用过rvm,但是在安装rvm 的时候发现系统有异常 错误信息,发现还有另外一个不错的可选工具 rbenv 安装 我是mac 系统 使用bre ...

  4. 在AD中设置漫游配置文件与文件夹重定向

    在域环境下,域用户可以在域中的任意一台客户端计算机上登录,由于普通域用户的权限比较低,在大多数情况下只能对自己的用户配置文件具有完全控制权限,因而大多数域用户都是将数据直接保存在用户配置文件中.用户配 ...

  5. Linux修改服务器Oracle字符集

    Linux安装Oracle时太仓促,没设置好,导入dmp字符集(ZHS16GBK)与服务器字符集(WE8MSWIN1252)对不上,导致导入数据失败: [oracle@ORACLE ~]$ sqlpl ...

  6. mysql 选择所有同学名字

    mysql> select * from test; +----+----------+-------+-----------+ | id | name | score | subject | ...

  7. PHP 根据php传的值修改 select 中动态生成的 option 组的默认选中值

    有一个情况今天遇到了:通过后台传过来的一组下拉框的option值,需要默认选中其中某一项. html 部分是这样的: <select class="form-control" ...

  8. 刷题记录:[DDCTF 2019]homebrew event loop

    目录 刷题记录:[DDCTF 2019]homebrew event loop 知识点 1.逻辑漏洞 2.flask session解密 总结 刷题记录:[DDCTF 2019]homebrew ev ...

  9. PTA中如何出Java编程题?

    很多第一次出Java编程题的老师,不知道Java在PTA中是如何处理输入的.写一篇文章供大家参考. 有多种类型输入的编程题: 类型1:固定数量输入 从控制台读入**两个**数,然后将其相加输出. 对于 ...

  10. Spring cloud微服务安全实战-8-1课程总结

    总结 首先讲了api的安全.安全常见的风险.安全措施.然后我们把简单的api演化成一个这种微服务的架构. 首先讲了在网关上可以做哪些安全的措施.然后讲了如何搭建一个安全中心,也就是认证服务器,包括一些 ...