[Usaco2006 Jan] Redundant Paths 分离的路径
1718: [Usaco2006 Jan] Redundant Paths 分离的路径
Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 1132 Solved: 590
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
1 2
2 3
3 4
2 5
4 5
5 6
5 7
Sample Output
HINT
Source
[Submit][Status][Discuss]
HOME
Back
题解
题意要求的是加最少的边让连通图变成边双。
翻了好久才有一篇讲解了构造的题解。
首先tarjan把边双都缩成一个点。如果个数只有1或2,答案显然。
然后是一棵树的情况,选择一个度数不为1的点(易证存在)做根节点。 如何把这棵树加最少的边变成边双呢?
统计出树中度为1的节点的个数,即为叶节点的个数,记为leaf。则至少在树上添加(leaf+1)/2条边,就能使树达到边二连通,所以至少添加的边数就是(leaf+1)/2。具体方法为,首先把两个最近公共祖先最远的两个叶节点之间连接一条边,这样就可以再缩一次点。然后再找两个最近公共祖先最远的两个叶节点,这样一对一对找完,恰好是(leaf+1)/2次,把所有点收缩到了一起。
为什么是正确的呢?考虑我们的目的,是让这棵树变成一个点。而如果这些叶节点都被上述那种找最长链的方式缩成一个点,那么整棵树也应该被缩成一个点了。还是感性理解啊……
#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-') w=-w;
for(;isdigit(ch);ch=getchar()) data=data*10+ch-'0';
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
using namespace std;
co int N=5e3+1,M=2e4+2;
int n,m,dfn[N],low[N],num;
int head[N],edge[M],next[M],tot=1;
int st[N],top;
int dcc[N],deg[N],cnt,ans;
bool v[N];
il void add(int x,int y){
edge[++tot]=y,next[tot]=head[x],head[x]=tot;
}
void tarjan(int x){
dfn[x]=low[x]=++num;
for(int i=head[x];i;i=next[i]){
if(v[i]) continue;
int y=edge[i];
if(!dfn[y]){
st[++top]=y;
v[i]=v[i^1]=1;
tarjan(y);
v[i]=v[i^1]=0;
low[x]=min(low[x],low[y]);
}
else low[x]=min(low[x],dfn[y]);
}
if(dfn[x]==low[x]){
++cnt;
while(top){
dcc[st[top]]=cnt;
if(st[top--]==x) break;
}
}
}
int main(){
read(n),read(m);
for(int x,y;m--;){
read(x),read(y);
add(x,y),add(y,x);
}
st[top=1]=1,tarjan(1);
for(int i=2;i<=tot;i+=2){
int x=edge[i],y=edge[i^1];
if(dcc[x]==dcc[y]) continue;
++deg[dcc[x]],++deg[dcc[y]];
}
for(int i=1;i<=n;++i) ans+=deg[i]==1;
printf("%d\n",(ans+1)/2);
return 0;
}
[Usaco2006 Jan] Redundant Paths 分离的路径的更多相关文章
- BZOJ 1718: [Usaco2006 Jan] Redundant Paths 分离的路径( tarjan )
tarjan求边双连通分量, 然后就是一棵树了, 可以各种乱搞... ----------------------------------------------------------------- ...
- [BZOJ1718]:[Usaco2006 Jan] Redundant Paths 分离的路径(塔尖)
题目传送门 题目描述 为了从F个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了被迫走某一条路,所以她们想建一些新路,使每一对草场之间都会至少有两条相互分 ...
- BZOJ 1718: [Usaco2006 Jan] Redundant Paths 分离的路径
Description 给出一个无向图,求将他构造成双连通图所需加的最少边数. Sol Tarjan求割边+缩点. 求出割边,然后缩点. 将双连通分量缩成一个点,然后重建图,建出来的就是一棵树,因为每 ...
- BZOJ1718 [Usaco2006 Jan] Redundant Paths 分离的路径
给你一个无向图,问至少加几条边可以使整个图变成一个双联通分量 简单图论练习= = 先缩点,ans = (度数为1的点的个数) / 2 这不是很好想的么QAQ 然后注意位运算的优先级啊魂淡!!!你个sb ...
- BZOJ1718: [Usaco2006 Jan] Redundant Paths 分离的路径【边双模板】【傻逼题】
LINK 经典傻逼套路 就是把所有边双缩点之后叶子节点的个数 //Author: dream_maker #include<bits/stdc++.h> using namespace s ...
- 【BZOJ】1718: [Usaco2006 Jan] Redundant Paths 分离的路径
[题意]给定无向连通图,要求添加最少的边使全图变成边双连通分量. [算法]Tarjan缩点 [题解]首先边双缩点,得到一棵树(无向无环图). 入度为1的点就是叶子,两个LCA为根的叶子间合并最高效,直 ...
- bzoj 1718: [Usaco2006 Jan] Redundant Paths 分离的路径【tarjan】
首先来分析一下,这是一张无向图,要求没有两条路联通的点对个数 有两条路连通,无向图,也就是说,问题转化为不在一个点双连通分量里的点对个数 tarjan即可,和求scc还不太一样-- #include& ...
- 【bzoj1718】Redundant Paths 分离的路径
1718: [Usaco2006 Jan] Redundant Paths 分离的路径 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 964 Solve ...
- Redundant Paths 分离的路径【边双连通分量】
Redundant Paths 分离的路径 题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields ...
随机推荐
- C/C++ 面试-面向对象的特性
面向对象的三大特性 此文只是简单介绍一下三大特性 详细介绍在: 封装:http://www.cnblogs.com/52why/p/7631381.html 继承:http://www.cnblo ...
- 第6/7Beta冲刺
1.团队成员 成员姓名 成员学号 秦裕航 201731062432(组长) 刘东 201731062227 张旭 201731062129 王伟 201731062214 2.SCRU部分 2.1各成 ...
- This view is not constrained, it only has designtime positions, so it will jump to (0,0) unless you
Android Studio报错 这个视图只是编辑时位置,在运行时视图会跳转到(0,0) 解决办法: 在Design界面下,有个魔棒工具,Infer Constrains,点击之后就可以了
- 手写简化版SpringBoot
Springboot项目全部依赖注解的,web工程是如何启动的 1 首先引入了Tomcat依赖,然后用java代码启动Tomcat容器,默认Tomcat版本是8.5版本 2 Tomcat是实现了ser ...
- 数组转JSON对象
代码: function arrayToJson(arr){ var js={}; for(var i=0;i<arr.length;i++){ js[arr[i].name]=arr[i].v ...
- Python中的int函数
python帮组文档 class int(x, base=10) Return an integer object constructed from a number or string x, or ...
- Magic Line(思维+计算几何问题)(2019牛客暑期多校训练营(第三场))
示例: 输入: 140 1-1 01 00 -1 输出:-1 999000000 1 -999000001 题意:给定平面上一系列的点,求一条以(x1,y1),(x2,y2)两点表示的直线将平面分为包 ...
- 深度学习Tensorflow相关书籍推荐和PDF下载
深度学习Tensorflow相关书籍推荐和PDF下载 baihualinxin关注 32018.03.28 10:46:16字数 481阅读 22,673 1.机器学习入门经典<统计学习方法&g ...
- OAuth2实现原理
现在开放平台非常流行,例如微信开放平台.微博开放平台等,开放平台都涉及用户授权问题,OAuth2就是目前的主流授权解决方案 OAuth2是什么 OAuth(Open Authorization,开放授 ...
- Docker3-Dockerfile创建镜像的方法(推荐docker file这种方法)
一.镜像制作的方法 1.本地导入导出镜像 请参考:Docker 架构原理及简单使用 导出:docker save nginx >/tmp/nginx.tar.gz 导入:docker load ...