1718: [Usaco2006 Jan] Redundant Paths 分离的路径

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 1132  Solved: 590
[Submit][Status][Discuss]

Description

    为了从F(1≤F≤5000)个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了被迫走某一条路,所以她们想建一些新路,使每一对草场之间都会至少有两条相互分离的路径,这样她们就有多一些选择.
    每对草场之间已经有至少一条路径.给出所有R(F-1≤R≤10000)条双向路的描述,每条路连接了两个不同的草场,请计算最少的新建道路的数量, 路径由若干道路首尾相连而成.两条路径相互分离,是指两条路径没有一条重合的道路.但是,两条分离的路径上可以有一些相同的草场. 对于同一对草场之间,可能已经有两条不同的道路,你也可以在它们之间再建一条道路,作为另一条不同的道路.

Input

    第1行输入F和R,接下来R行,每行输入两个整数,表示两个草场,它们之间有一条道路.

Output

    最少的需要新建的道路数.

Sample Input

7 7

1 2

2 3

3 4

2 5

4 5

5 6

5 7


Sample Output

2

HINT

Source

[Submit][Status][Discuss]

HOME
Back


题解

题意要求的是加最少的边让连通图变成边双。

翻了好久才有一篇讲解了构造的题解

首先tarjan把边双都缩成一个点。如果个数只有1或2,答案显然。

然后是一棵树的情况,选择一个度数不为1的点(易证存在)做根节点。 如何把这棵树加最少的边变成边双呢?

统计出树中度为1的节点的个数,即为叶节点的个数,记为leaf。则至少在树上添加(leaf+1)/2条边,就能使树达到边二连通,所以至少添加的边数就是(leaf+1)/2。具体方法为,首先把两个最近公共祖先最远的两个叶节点之间连接一条边,这样就可以再缩一次点。然后再找两个最近公共祖先最远的两个叶节点,这样一对一对找完,恰好是(leaf+1)/2次,把所有点收缩到了一起。

为什么是正确的呢?考虑我们的目的,是让这棵树变成一个点。而如果这些叶节点都被上述那种找最长链的方式缩成一个点,那么整棵树也应该被缩成一个点了。还是感性理解啊……

#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-') w=-w;
for(;isdigit(ch);ch=getchar()) data=data*10+ch-'0';
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
using namespace std; co int N=5e3+1,M=2e4+2;
int n,m,dfn[N],low[N],num;
int head[N],edge[M],next[M],tot=1;
int st[N],top;
int dcc[N],deg[N],cnt,ans;
bool v[N]; il void add(int x,int y){
edge[++tot]=y,next[tot]=head[x],head[x]=tot;
}
void tarjan(int x){
dfn[x]=low[x]=++num;
for(int i=head[x];i;i=next[i]){
if(v[i]) continue;
int y=edge[i];
if(!dfn[y]){
st[++top]=y;
v[i]=v[i^1]=1;
tarjan(y);
v[i]=v[i^1]=0;
low[x]=min(low[x],low[y]);
}
else low[x]=min(low[x],dfn[y]);
}
if(dfn[x]==low[x]){
++cnt;
while(top){
dcc[st[top]]=cnt;
if(st[top--]==x) break;
}
}
}
int main(){
read(n),read(m);
for(int x,y;m--;){
read(x),read(y);
add(x,y),add(y,x);
}
st[top=1]=1,tarjan(1);
for(int i=2;i<=tot;i+=2){
int x=edge[i],y=edge[i^1];
if(dcc[x]==dcc[y]) continue;
++deg[dcc[x]],++deg[dcc[y]];
}
for(int i=1;i<=n;++i) ans+=deg[i]==1;
printf("%d\n",(ans+1)/2);
return 0;
}

[Usaco2006 Jan] Redundant Paths 分离的路径的更多相关文章

  1. BZOJ 1718: [Usaco2006 Jan] Redundant Paths 分离的路径( tarjan )

    tarjan求边双连通分量, 然后就是一棵树了, 可以各种乱搞... ----------------------------------------------------------------- ...

  2. [BZOJ1718]:[Usaco2006 Jan] Redundant Paths 分离的路径(塔尖)

    题目传送门 题目描述 为了从F个草场中的一个走到另一个,贝茜和她的同伴们有时不得不路过一些她们讨厌的可怕的树.奶牛们已经厌倦了被迫走某一条路,所以她们想建一些新路,使每一对草场之间都会至少有两条相互分 ...

  3. BZOJ 1718: [Usaco2006 Jan] Redundant Paths 分离的路径

    Description 给出一个无向图,求将他构造成双连通图所需加的最少边数. Sol Tarjan求割边+缩点. 求出割边,然后缩点. 将双连通分量缩成一个点,然后重建图,建出来的就是一棵树,因为每 ...

  4. BZOJ1718 [Usaco2006 Jan] Redundant Paths 分离的路径

    给你一个无向图,问至少加几条边可以使整个图变成一个双联通分量 简单图论练习= = 先缩点,ans = (度数为1的点的个数) / 2 这不是很好想的么QAQ 然后注意位运算的优先级啊魂淡!!!你个sb ...

  5. BZOJ1718: [Usaco2006 Jan] Redundant Paths 分离的路径【边双模板】【傻逼题】

    LINK 经典傻逼套路 就是把所有边双缩点之后叶子节点的个数 //Author: dream_maker #include<bits/stdc++.h> using namespace s ...

  6. 【BZOJ】1718: [Usaco2006 Jan] Redundant Paths 分离的路径

    [题意]给定无向连通图,要求添加最少的边使全图变成边双连通分量. [算法]Tarjan缩点 [题解]首先边双缩点,得到一棵树(无向无环图). 入度为1的点就是叶子,两个LCA为根的叶子间合并最高效,直 ...

  7. bzoj 1718: [Usaco2006 Jan] Redundant Paths 分离的路径【tarjan】

    首先来分析一下,这是一张无向图,要求没有两条路联通的点对个数 有两条路连通,无向图,也就是说,问题转化为不在一个点双连通分量里的点对个数 tarjan即可,和求scc还不太一样-- #include& ...

  8. 【bzoj1718】Redundant Paths 分离的路径

    1718: [Usaco2006 Jan] Redundant Paths 分离的路径 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 964  Solve ...

  9. Redundant Paths 分离的路径【边双连通分量】

    Redundant Paths 分离的路径 题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields ...

随机推荐

  1. Oracle spatial与arcsde 的关系

    有一些同事问过我下面这些问题: 我们用了oracle spatial sdo_geometry,是不是没用arcsde? 我们到底是使用oracle spatial还是arcsde,有点懵! 执行了c ...

  2. QT QML与C++混搭

    "那些杀不死我的必使我更加强大"----尼采 QML与C++混合编程就是使用QML高效便捷地构建UI,而C++则用来实现业务逻辑和复杂算法. ML访问C++Qt集成了QML引擎和Q ...

  3. LeetCode 238. 除自身以外数组的乘积(Product of Array Except Self)

    238. 除自身以外数组的乘积 238. Product of Array Except Self 题目描述 LeetCode LeetCode238. Product of Array Except ...

  4. Oracle 11g 总结篇2

    第一部分: 字段名的别名用""括起来,如:last_name as "姓名". 去除重复:在投影的字段名前加上 distinct 就可以了. 比如:select ...

  5. TZOJ5255: C++实验:三角形面积

    #include<iostream> #include<iomanip> #include<math.h> #include<cmath> using ...

  6. 【LEETCODE】58、数组分类,适中级别,题目:238、78、287

    package y2019.Algorithm.array.medium; import java.util.Arrays; /** * @ProjectName: cutter-point * @P ...

  7. 【LEETCODE】47、985. Sum of Even Numbers After Queries

    package y2019.Algorithm.array; /** * @ProjectName: cutter-point * @Package: y2019.Algorithm.array * ...

  8. (转)三大WEB服务器对比分析(apache ,lighttpd,nginx)

    ref : https://www.iteye.com/blog/hai0378-1860220   一.软件介绍(apache  lighttpd  nginx) 1. lighttpd Light ...

  9. mysql_重置密码

    # 修改编码 ```pythonshow variables like '%char%'; #查看当前使用的编码 1.打开配置文件: vim /etc/mysql/my.cnf 2.在[client] ...

  10. SpringBoot打成jar包后无法读取resources资源文件

    在项目中做了一个支付功能, 需要引入第三方渠道的配置文件config.xml用来初始化文件证书, 将配置文件 config.xml 放到 resources 资源目录下. 本地开发环境下能正常读取该文 ...