Tian Ji -- The Horse Racing

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 37056    Accepted Submission(s): 11153

Problem Description
Here is a famous story in Chinese history.

"That was about 2300 years ago. General Tian Ji was a high official in the country Qi. He likes to play horse racing with the king and others."

"Both of Tian and the king have three horses in different classes, namely, regular, plus, and super. The rule is to have three rounds in a match; each of the horses must be used in one round. The winner of a single round takes two hundred silver dollars from the loser."

"Being the most powerful man in the country, the king has so nice horses that in each class his horse is better than Tian's. As a result, each time the king takes six hundred silver dollars from Tian."

"Tian Ji was not happy about that, until he met Sun Bin, one of the most famous generals in Chinese history. Using a little trick due to Sun, Tian Ji brought home two hundred silver dollars and such a grace in the next match."

"It was a rather simple trick. Using his regular class horse race against the super class from the king, they will certainly lose that round. But then his plus beat the king's regular, and his super beat the king's plus. What a simple trick. And how do you think of Tian Ji, the high ranked official in China?"

Were Tian Ji lives in nowadays, he will certainly laugh at himself. Even more, were he sitting in the ACM contest right now, he may discover that the horse racing problem can be simply viewed as finding the maximum matching in a bipartite graph. Draw Tian's horses on one side, and the king's horses on the other. Whenever one of Tian's horses can beat one from the king, we draw an edge between them, meaning we wish to establish this pair. Then, the problem of winning as many rounds as possible is just to find the maximum matching in this graph. If there are ties, the problem becomes more complicated, he needs to assign weights 0, 1, or -1 to all the possible edges, and find a maximum weighted perfect matching...

However, the horse racing problem is a very special case of bipartite matching. The graph is decided by the speed of the horses --- a vertex of higher speed always beat a vertex of lower speed. In this case, the weighted bipartite matching algorithm is a too advanced tool to deal with the problem.

In this problem, you are asked to write a program to solve this special case of matching problem.

 
Input
The input consists of up to 50 test cases. Each case starts with a positive integer n (n <= 1000) on the first line, which is the number of horses on each side. The next n integers on the second line are the speeds of Tian’s horses. Then the next n integers on the third line are the speeds of the king’s horses. The input ends with a line that has a single 0 after the last test case.
 
Output
For each input case, output a line containing a single number, which is the maximum money Tian Ji will get, in silver dollars.
 
Sample Input
3
92 83 71
95 87 74
2
20 20
20 20
2
20 19
22 18
0
 
Sample Output
200
0
0
 
 
题目大意:
田忌和齐威王赛马。两人各有n匹马。每匹马都有一个速度属性。赛马时如果平局则不计分,如果赢了记200分,如果输了扣200分。问怎样匹配田忌分最高,输出最高分。
 
贪心好题。
首先比较田忌和齐威王最慢的马,分别为T和Q。
如果T快,则让T赢Q。因为田忌的马都能赢Q,所以用最少的耗费赢Q;
如果T慢,则让T输给齐威王最快的马。因为齐威王的马都能赢T,所以拉齐威王最快的马下水;
如果T和Q一样快,则比较田忌和齐威王最快的马,分别为TT和QQ:
如果TT快,则让TT赢QQ,因为赢谁都是赢,所以赢齐威王最快的马;
如果TT慢,则让QQ赢田忌最慢的马,因为谁输QQ都是输,用最小的耗费输给他;
如果TT和QQ一样快,则让T输给QQ,因为让T、TT平Q、QQ,则田忌并不赚,用T输给QQ,再用一个较小的数赢Q,则田忌省下了TT,稳赚。
 
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<stack> typedef long long lol; using namespace std; const int maxn=; int a[maxn+];
int b[maxn+]; int main()
{
int n;
while(scanf("%d",&n),n)
{
for(int i=;i<=n;i++)
scanf("%d",a+i);
for(int i=;i<=n;i++)
scanf("%d",b+i);
sort(a+,a++n);
sort(b+,b++n); int win=,tie=,los=;
int a1=,b1=,a2=n,b2=n;
while(a1<=a2)
{
if(a[a1]>b[b1])
{
win++;
a1++;b1++;
}
else if(a[a1]<b[b1])
{
los++;
a1++;b2--;
}
else
{
if(a[a2]>b[b2])
{
win++;
a2--;b2--;
}
else if(a[a2]<b[b2])
{
los++;
a1++;b2--;
}
else
{
if(a[a1]<b[b2])
{
los++;
a1++;b2--;
}
else
{
tie++;
a1++;b2--;
}
}
}
} printf("%d\n",win*-los*);
}
return ;
}

hdu 1052 Tian Ji -- The Horse Racing (田忌赛马)的更多相关文章

  1. HDU 1052 Tian Ji -- The Horse Racing (贪心)(转载有修改)

    Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  2. Hdu 1052 Tian Ji -- The Horse Racing

    Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  3. HDU 1052 Tian Ji -- The Horse Racing【贪心在动态规划中的运用】

    算法分析: 这个问题很显然可以转化成一个二分图最佳匹配的问题.把田忌的马放左边,把齐王的马放右边.田忌的马A和齐王的B之间,如果田忌的马胜,则连一条权为200的边:如果平局,则连一条权为0的边:如果输 ...

  4. HDU 1052 Tian Ji -- The Horse Racing(贪心)(2004 Asia Regional Shanghai)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1052 Problem Description Here is a famous story in Ch ...

  5. hdu 1052 Tian Ji -- The Horse Racing【田忌赛马】

    题目 这道题主要是需要考虑到各种情况:先对马的速度进行排序,然后分情况考虑: 1.当田忌最慢的马比国王最慢的马快则赢一局 2.当田忌最快的马比国王最快的马快则赢一局 3.当田忌最快的马比国王最快的马慢 ...

  6. HDU 1052 Tian Ji -- The Horse Racing(贪心)

    题目来源:1052 题目分析:题目说的权值匹配算法,有点误导作用,这道题实际是用贪心来做的. 主要就是规则的设定: 1.田忌最慢的马比国王最慢的马快,就赢一场 2.如果田忌最慢的马比国王最慢的马慢,就 ...

  7. 杭州电 1052 Tian Ji -- The Horse Racing(贪婪)

    http://acm.hdu.edu.cn/showproblem.php? pid=1052 Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS ...

  8. hdoj 1052 Tian Ji -- The Horse Racing【田忌赛马】 【贪心】

    思路:先按从小到大排序, 然后从最快的開始比(如果i, j 是最慢的一端, flag1, flag2是最快的一端 ),田的最快的大于king的 则比較,如果等于然后推断,有三种情况: 一:大于则比較, ...

  9. 【贪心】[hdu1052]Tian Ji -- The Horse Racing(田忌赛马)[c++]

    Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java ...

随机推荐

  1. Python 深入浅出支持向量机(SVM)算法

    相比于逻辑回归,在很多情况下,SVM算法能够对数据计算从而产生更好的精度.而传统的SVM只能适用于二分类操作,不过却可以通过核技巧(核函数),使得SVM可以应用于多分类的任务中. 本篇文章只是介绍SV ...

  2. JavaScript笔记八

    1.原型(prototype) - 创建一个函数以后,解析器都会默认在函数中添加一个数prototype prototype属性指向的是一个对象,这个对象我们称为原型对象. - 当函数作为构造函数使用 ...

  3. wincap linux部署

    1.4.1 linux下安装Winpcap a) 下载Winpcap的源码:https://www.winpcap.org/devel.htm b) 上传源码包“WpcapSrc_4_1_3.zip” ...

  4. python-面向对象之封装

    封装 面向对象三大特性: 继承 封装 多态 隐藏对象的属性和实现细节,仅对外提供公共访问方法 广义上的封装 : 把方法和变量都封装在类中 狭义上的封装 : 在类的外部干脆不能调用了 优点 将变化隔离 ...

  5. 全网最通俗易懂的Kafka入门!

    前言 只有光头才能变强. 文本已收录至我的GitHub仓库,欢迎Star:https://github.com/ZhongFuCheng3y/3y 在这篇之前已经写过两篇基础文章了,强烈建议先去阅读: ...

  6. 02 JavaScript数据类型、类型转换、注释

    JavaScript 数据类型 JavaScript 变量能够保存多种数据类型:数值.字符串值.数组.对象.undefined.null等等 var length = 7; // 数字 var las ...

  7. nginx集群架构

    Linux集群从功能分类 高可用集群,高可用集群通常为俩台服务器,一台工作,另一台冗余,当提供服务器的服务器宕机时候,冗余服务器将接替宕机的服务器继续提供服务.实现高可用的集群开源软件有Heatbea ...

  8. div水平垂直居中的六种方法

    在平时,我们经常会碰到让一个div框针对某个模块上下左右都居中(水平垂直居中),其实针对这种情况,我们有多种方法实现. 方法一: 绝对定位方法:不确定当前div的宽度和高度,采用 transform: ...

  9. 手机端web(iPad)页面自适应js

    有关编写手机页面(ipad页面)自适应的方法有很多,比如:bootstrap,rem等等.下面分享给大家一个js控制viewPort视区自适应缩放的方法(我给它命名为phone.js): 将phone ...

  10. 【CKB.DEV 茶话会】如何在 CKB 上实现用户自定义 Token

    本贴内容主要来自于 CKB.DEV 茶话会第一期,本期主题是:如何在 CKB 上实现 UDT,分享人是:Cipher 王博. 茶话会现场视频: https://v.qq.com/x/page/x303 ...