关于大数据T+1执行流程
关于大数据T+1执行流程
前提: 搭建好大数据环境(hadoop hive hbase sqoop zookeeper oozie hue)
1.将所有数据库的数据汇总到hive (这里有三种数据源 ORACLE MYSQL SEQSERVER)
全量数据抽取示例:
ORACLE(注意表名必须大写!!!)
sqoop import --connect jdbc:oracle:thin:@//10.11.22.33:1521/LPDR.china.com.hh --username root --password 1234 \
--table DATABASENAME.TABLENAME --hive-overwrite --hive-import --hive-database bgda_hw --hive-table lp_tablename \
--target-dir /user/hadouser_hw/tmp/lp_tablename --delete-target-dir \
--null-non-string '\\N' --null-string '\\N' \
--hive-drop-import-delims --verbose --m 1
MYSQL:
sqoop import --connect jdbc:mysql://10.33.44.55:3306/DATABASEBANE --username ROOT --password 1234 \
--query 'select * from DEMO t where t.DATE1 < current_date and $CONDITIONS' \
--hive-overwrite --hive-import --hive-database bgda_hw --hive-table DEMO \
--target-dir /user/hadouser_hw/tmp/DEMO --delete-target-dir \
--null-non-string '\\N' --null-string '\\N' \
--hive-drop-import-delims --verbose --m 1
SQLSERVER:
sqoop import --connect 'jdbc:sqlserver://10.55.66.15:1433;username=ROOT;password=ROOT;database=db_DD' \
--query 'select * from TABLE t where t.tasktime < convert(varchar(10),getdate(),120) and $CONDITIONS' \
--hive-overwrite --hive-import --hive-database bgda_hw --hive-table TABLENAME \
--target-dir /user/hadouser_hw/tmp/TABLENAME --delete-target-dir \
--null-non-string '\\N' --null-string '\\N' \
--hive-drop-import-delims --verbose --m 1
2. 编写hive脚本,对数据进行处理
说明:
data 存储T+1跑出来的数据信息,只存一天的数据量
data_bak : 存储所有的数据信息
(初始化脚本)
use bgda_hw;
set hive.auto.convert.join=false; drop table data_bak;
create table data_bak(
scanopt string
,scanoptname string
,statisdate string
) row format delimited fields terminated by '\001'; insert overwrite table data_bak
SELECT
a.scanopt
,x0.name as scanoptname
,to_date(a.scandate) as statisdate
from bgda_hw.scan a
left outer join bgda_hw.user x0 on x0.userid = a.scanopt
where 1=1
and datediff(a.scandate,'2019-01-01' )>=0
and datediff(a.scandate,'2019-09-20' )<0
GROUP BY a.scanopt,x0.name,a.scandate
order by a.scandate
;
(t+1脚本)
use bgda_hw;
set hive.auto.convert.join=false; drop table data;
create table data(
scanopt string
,scanoptname string
,statisdate string
) row format delimited fields terminated by '\001'; insert overwrite table data
SELECT
a.scanopt
,x0.name as scanoptname
,to_date(a.scandate) as statisdate
from bgda_hw.scan a
left outer join bgda_hw.user x0 on x0.userid = a.scanopt
where 1=1
and a.scandate<date_add(from_unixtime(unix_timestamp(),'yyyy-MM-dd'),0)
and a.scandate>=date_add(from_unixtime(unix_timestamp(),'yyyy-MM-dd'),-1)
GROUP BY a.scanopt,x0.name,a.scandate
order by a.scandate
; insert into table data_bak
select * from data
;
3.将结果数据抽取到结果库里
sqoop export \
--connect jdbc:mysql://10.6.11.11:3306/report \
--username root \
--password 1234 \
--table data \
--export-dir /user/hive/warehouse/bgda_hw.db/data \
--columns scanopt,scanoptname,statisdate \
--fields-terminated-by '\001' \
--lines-terminated-by '\n' \
--input-null-string '\\N' \
--input-null-non-string '\\N'
抽數腳本示例 (腳本中的insert.hql 則是上方定義的hive腳本信息)
#!/bin/bash export CDH_PARCEL=/var/opt/cloudera/parcels/CDH/bin/
export PATH=${PATH}:${CDH_PARCEL}
export PYTHON_EGG_CACHE=~/.python-eggs #kinit to user hadouser_hw
kinit -kt hadouser_hw.keytab hadouser@HADOOP-AD-ROOT.DC echo "$CDH_PARCEL: {CDH_PARCEL} "
echo "$PATH: {PATH} "
echo "$PYTHON_EGG_CACHE: {PYTHON_EGG_CACHE} " #sqoop import full data from mssql database to hdfs
set -x beeline -u "jdbc:hive2://10.20.33.44:10000/default;principal=hive/sssssss012@HADOOP-AD-ROOT.DC" -f insert.hql # 将数据抽取到mysql 结果数据 原数据
sqoop export \
--connect jdbc:mysql://10.6.11.15:3306/report \
--username root \
--password 1234 \
--table rs_kpitime_psdata \
--export-dir /user/hive/warehouse/bgda_hw_stg.db/rs_kpitime_psdata_bak \
--columns aplcustno,isapprv,statisdate,statisyear,statisquarter,statismonth,countdate \
--fields-terminated-by '\001' \
--lines-terminated-by '\n' \
--input-null-string '\\N' \
--input-null-non-string '\\N' ret=$?
set +x if [[ $ret -eq 0 ]];then
echo "insert table OK"
else
echo "insert table failed!!!Please check!!!"
exit $ret
fi
4.定义调度信息(oozie),每天定时跑出结果数据,自动抽取到结果库中
HUE的基本使用
定义工作流信息
先进入workflow
开始定义
选定要执行的脚本 (图片中提到的keytab 是一个认证文件)
定义定时任务
先进入定时任务页面
新建定时任务
定时任务详细定义(点击Options ,选择ShangHai时区,然后定义任务执行时长(例如 从2019年到2099年,最后保存,保存好后记得点击执行!!!))
5.配置可视化组件展示数据 saiku
这部分详细教程请参考 https://www.cnblogs.com/DFX339/tag/saiku/
关于大数据T+1执行流程的更多相关文章
- 大数据小白系列 —— MapReduce流程的深入说明
上一期我们介绍了MR的基本流程与概念,本期稍微深入了解一下这个流程,尤其是比较重要但相对较少被提及的Shuffling过程. Mapping 上期我们说过,每一个mapper进程接收并处理一块数据,这 ...
- 一个简单的使用Quartz和Oozie调度作业给大数据计算平台执行
一,介绍 Oozie是一个基于Hadoop的工作流调度器,它可以通过Oozie Client 以编程的形式提交不同类型的作业,如MapReduce作业和Spark作业给底层的计算平台(如 Cloude ...
- 迎战大数据-Oracle篇
来自:http://www.cnblogs.com/wenllsz/archive/2012/11/16/2774205.html 了解大数据带来的机遇: 透视架构与工具: 开源节流,获得竞争优势. ...
- BigData:值得了解的十大数据发展趋势
当今,世界无时无刻不在发生着变化.对于技术领域而言,普遍存在的一个巨大变化就是为大数据(Big data)打开了大门,并应用大数据技相关技术来改善各行业的业务并促进经济的发展.目前,大数据的作用已经上 ...
- AI时代,还不了解大数据?
如果要问最近几年,IT行业哪个技术方向最火?一定属于ABC,即AI + Big Data + Cloud,也就是人工智能.大数据和云计算. 这几年,随着互联网大潮走向低谷,同时传统企业纷纷进行数字化转 ...
- 大数据 --> 大数据关键技术
大数据关键技术 大数据环境下数据来源非常丰富且数据类型多样,存储和分析挖掘的数据量庞大,对数据展现的要求较高,并且很看重数据处理的高效性和可用性. 传统数据处理方法的不足 传统的数据采集来源单一,且存 ...
- 什么是SQL Server2019大数据群集?
从SQL Server 2019(15.x)开始,SQL Server大数据群集允许您部署在Kubernetes上运行的SQL Server,Spark和HDFS容器的可伸缩群集.这些组件并排运行,使 ...
- 大数据学习day23-----spark06--------1. Spark执行流程(知识补充:RDD的依赖关系)2. Repartition和coalesce算子的区别 3.触发多次actions时,速度不一样 4. RDD的深入理解(错误例子,RDD数据是如何获取的)5 购物的相关计算
1. Spark执行流程 知识补充:RDD的依赖关系 RDD的依赖关系分为两类:窄依赖(Narrow Dependency)和宽依赖(Shuffle Dependency) (1)窄依赖 窄依赖指的是 ...
- 大数据技术之_19_Spark学习_03_Spark SQL 应用解析 + Spark SQL 概述、解析 、数据源、实战 + 执行 Spark SQL 查询 + JDBC/ODBC 服务器
第1章 Spark SQL 概述1.1 什么是 Spark SQL1.2 RDD vs DataFrames vs DataSet1.2.1 RDD1.2.2 DataFrame1.2.3 DataS ...
随机推荐
- maven打包mapper.xml打不进去问题
<resources> <resource> <directory>src/main/java</directory> <includes> ...
- ssm整合——Mybatis配置(1)
mybatis搭建-基于注解 1. 环境准备 1.1 新建maven的webapp项目 1.2 新建必要的目录和文件 1.3 文件配置 pom.xml junit默认创建是4.11,手动改成4.12 ...
- 《Dotnet9》系列-开源C# WPF控件库强力推荐
时间如流水,只能流去不流回! 点赞再看,养成习惯,这是您给我创作的动力! 本文 Dotnet9 https://dotnet9.com 已收录,站长乐于分享dotnet相关技术,比如Winform.W ...
- vue & nodejs jwt 的基于token身份验证
现在比较流行的验证方式,是带着token的登录验证 原理 1. 登陆时,客户端发送用户名密码 2. 服务端验证用户名密码是否正确,校验通过就会生成一个有时效的token串,发送给客户端 3. 客户端储 ...
- react-native run-ios “Could not find iPhone X simulator”
问题 这个问题发生在旧的RN版本(0.57,0.58(<0.58.4),-)和Xcode 10.3中,其中可用模拟器的名称得到了一些调整 在文件node_modules/@react nativ ...
- 平时常用sql
总结一下平时用到最多的sql语句 1.特殊日期 --今天凌晨 ,) --明天凌晨 ,,) --当周周一(每周从周日开始) ,) --当月的第一天 ,) --当月的最后一天 ,,,)) --今年的第一天 ...
- linux globbing文件名通配
globbing:文件名通配 元字符: *:匹配任意长度的任意字符 ?:匹配任意单个字符 []:匹配指定范围内的任意单个字符 [a-z]或者[A-Z]或者[[:alpha:]]:匹配任意一个字母 [[ ...
- Leetcode92: Reverse Linked List II 翻转链表问题
问题描述 给定一个链表,要求翻转其中从m到n位上的节点,返回新的头结点. Example Input: 1->2->3->4->5->NULL, m = 2, n = 4 ...
- render加载vue文件 vue-loader配置
默认webpack无法打包.vue文件,需要安装相关Loader安装 npm install vue-loader vue-template-compiler -D webpack.config.js ...
- C语言笔记 03_常量&存储类
常量 常量是固定值,在程序执行期间不会改变.这些固定的值,又叫做字面量. 常量可以是任何的基本数据类型,比如整数常量.浮点常量.字符常量,或字符串字面值,也有枚举常量. 整数常量 整数常量可以是十进制 ...