针对hive on mapreduce
1:我们可以通过一些配置项来使Hive在执行结束后对结果文件进行合并:
参数详细内容可参考官网:https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
hive.merge.mapfiles 在 map-only job后合并文件,默认true
hive.merge.mapredfiles 在map-reduce job后合并文件,默认false
hive.merge.size.per.task 合并后每个文件的大小,默认256000000
hive.merge.smallfiles.avgsize 平均文件大小,是决定是否执行合并操作的阈值,默认16000000
2:如果结果表使用了压缩格式,则必须配合Sequence File来存储,否则无法进行合并
3:Hadoop的归档文件格式也是解决小文件问题的方式之一。而且Hive提供了原生支持,如果使用的不是分区表,则可创建成外部表,并使用har://协议来指定路径
4:对于通常的应用,使用Hive结果合并就能达到很好的效果。如果不想因此增加运行时间,可以自行编写一些脚本,在系统空闲时对分区内的文件进行合并,也能达到目的。
5:Reducer数量的减少也即意味着结果文件的减少,从而解决产生小文件的问题。
 
但是,对于通过sparksql来处理数据的话,在conf里添加上面参数调整是没有作用的,不过可以通过下面的方式来规避小文件:
1.通过使用repartition重分区动态调整文件输出个数
  比如 spark.sql("sql").repartition(1).write().mode(SaveMode.Overwrite).saveAsTable("test");
2.使用Adaptive Execution动态设置shuffle partition
 
		SparkConf conf = new SparkConf();
		conf.set("spark.sql.adaptive.enabled", "true");
		conf.set("spark.sql.adaptive.shuffle.targetPostShuffleInputSize", "67108864b");
		conf.set("spark.sql.adaptive.join.enabled", "true");
		conf.set("spark.sql.autoBroadcastJoinThreshold", "20971520");

		SparkSession spark = SparkSession
				.builder()
				.appName("JointSitePlan")
				.master("local")
				.config(conf)
				.enableHiveSupport()
				.getOrCreate();

  shuffle partition是通过参数spark.sql.shuffle.partitions来指定的,默认是200,但是对于数据不大,或者数据倾斜的情况,会生成很多的小文件,几兆甚至几KB大小,自适应执行则会根据参数 spark.sql.adaptive.shuffle.targetPostShuffleInputSize 动态调整reducer数量,详细可见 上一篇文章

 

spark sql/hive小文件问题的更多相关文章

  1. Spark SQL Hive Support Demo

    前提: 1.spark1.0的包编译时指定支持hive:./make-distribution.sh --hadoop 2.3.0-cdh5.0.0 --with-yarn --with-hive - ...

  2. local模式运行spark-shell时报错 java.lang.IllegalArgumentException: Error while instantiating 'org.apache.spark.sql.hive.HiveSessionState':

    先前在local模式下,什么都不做修改直接运行./spark-shell 运行什么问题都没有,然后配置过在HADOOP yarn上运行,之后再在local模式下运行出现以下错误: java.lang. ...

  3. hive小文件合并设置参数

    Hive的后端存储是HDFS,它对大文件的处理是非常高效的,如果合理配置文件系统的块大小,NameNode可以支持很大的数据量.但是在数据仓库中,越是上层的表其汇总程度就越高,数据量也就越小.而且这些 ...

  4. Caused by: java.sql.SQLException: Failed to start database 'metastore_db' with class loader org.apache.spark.sql.hive.client.IsolatedClientLoader$$anon$1@d7c365, see the next exception for details.

    解决方法:https://stackoverflow.com/questions/37442910/spark-shell-startup-errors 异常: 18/01/29 19:04:27 W ...

  5. Spark SQL读parquet文件及保存

    import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.sql.{Row, SparkSession} im ...

  6. 小记---------spark组件与其他组件的比较 spark/mapreduce ;spark sql/hive ; spark streaming/storm

    Spark与Hadoop的对比   Scala是Spark的主要编程语言,但Spark还支持Java.Python.R作为编程语言 Hadoop的编程语言是Java    

  7. spark SQL读取ORC文件从Driver启动到开始执行Task(或stage)间隔时间太长(计算Partition时间太长)且产出orc单个文件中stripe个数太多问题解决方案

    1.背景: 控制上游文件个数每天7000个,每个文件大小小于256M,50亿条+,orc格式.查看每个文件的stripe个数,500个左右,查询命令:hdfs fsck viewfs://hadoop ...

  8. Spark SQL -- Hive

    使用Saprk SQL 操作Hive的数据 前提准备: 1.启动Hdfs,hive的数据存储在hdfs中; 2.启动hive -service metastore,元数据存储在远端,可以远程访问; 3 ...

  9. Hive小文件处理

    小文件是如何产生的: 动态分区插入数据的时候,会产生大量的小文件,从而导致map数量的暴增 数据源本身就包含有大量的小文件 reduce个数越多,生成的小文件也越多 小文件的危害: 从HIVE角度来看 ...

随机推荐

  1. ThreadGroup详细讲解

    import java.util.concurrent.TimeUnit; public class Test { public static void main(String[] args){ // ...

  2. 【Download error:TOO MANY REQUESTS】&【TypeError:excepted string or buffer】

    <用python写网络爬虫>,1.4.4链接爬虫,运行时,遇到错误: Download error:TOO MANY REQUESTS Traceback(most recent call ...

  3. Python入门基础(8)

    上一篇介绍了一些python中函数的基本用法,那么,现在就来谈一谈python中的一些内置函数吧 python中的内置函数 1.map()函数 map()函数接受两个参数值,一个是函数,一个是Iter ...

  4. springboot启动代码(自用)

    1.springboot配置解释 @AutoConfigurationPackage //自动配置包 //@Import(AutoConfigurationPackages.Registrar.cla ...

  5. baserecyclerviewadapterhelper -- setOnItemChildClickListener出现的问题

    出现问题 使用baserecyclerviewadapterhelper 的时候使用 adapter.setOnItemChildClickListener()方法,点击没有反应. adapter.s ...

  6. 【css系列】六种实现元素水平居中方法

    一.前言 居中效果在CSS中很是普通的效果,平时大家所看到的居中效果主要分为三大类:水平居中.垂直居中和水平垂直居中.而其中水平居中相对于后两者来说要简单得多.使用了css3的flexbox的属性轻松 ...

  7. join,列表和字典用for循环的删除,集合,深浅拷贝

    1.join() 将列表转换成字符串,并且每个字符之间用另一个字符连接起来,join后面必须是可迭代的对象(字符串,列表,元组,字典,集合),数字不能迭代 例如: s = ['a','b','c'] ...

  8. Quartus ii调试技巧_01

    前几天李主任跟我分享了一些特别好用的调试技巧: 1)System Sources and Probes Editor---类似于人为设置触发条件,创建虚拟按键等功能,这段时间一直在做一个电机的驱动,板 ...

  9. Flink实战(八) - Streaming Connectors 编程

    1 概览 1.1 预定义的源和接收器 Flink内置了一些基本数据源和接收器,并且始终可用.该预定义的数据源包括文件,目录和插socket,并从集合和迭代器摄取数据.该预定义的数据接收器支持写入文件和 ...

  10. Linux设备驱动程序学习----1.设备驱动程序简介

    设备驱动程序简介 更多内容请参考Linux设备驱动程序学习----目录 1. 简介   Linux系统的优点是,系统内部实现细节对所有人都是公开的.Linux内核由大量复杂的代码组成,设备驱动程序可以 ...