数据挖掘算法学习笔记汇总

数据挖掘算法(一)–K近邻算法 (KNN)

数据挖掘算法(二)–决策树

数据挖掘算法(三)–logistic回归

在介绍logistic回归之前先复习几个基础知识点,有助于后面的理解。

基本数学知识点

1、对数似然函数

若总体X为离散型,其概率分布列为

P(X=x)=p(x,θ)

其中θ为未知参数。设 (X1,X2,...,Xn) 是取自总体样本容量为n的样本,则(X1,X2,...,Xn)的联合概率分布率为

∏i=1np(xi,θ)

又设(X1,X2,...,Xn)的一组观测值为(x1,x2,...,xn),易知样本X1,X2,...,Xn取到观测值 x1,x2,...,xn 的概率为

L(θ)=L(x1,x2,...,xn;θ)=∏i=1np(xi,θ)

这一概率随 θ 的取值而变化,它是 θ 的函数,称 L(θ) 为样本的似然函数。但是由于来连乘的函数处理起来比较麻烦,所以对 L(θ) 取自然对数变成加法来处理要简单点。

lnL(θ)=∑i=1nlnp(xi,θ)

2、logistic函数

logistic函数或logistic曲线是常见的“S”形(sigmoid curve ,S形曲线),方程式如下:

f(x)=L1+e−k(x−x0)

其中

  • e自然对数
  • x0 S形中点的x值
  • L曲线的 最大值
  • k曲线的陡度



    上图是L=1,k=1,x0=0时的图像

    这里主要说明下这个函数的导数的性质,后面推导的时候会用到。

    f(x)=11+e−x=ex1+ex
    ddxf(x)=ex(1+ex)−exex(1+ex)2
    ddxf(x)=ex(1+ex)2=f(x)(1−f(x))

logistic回归数学推导

先看一个简单的例子:



我们将平面上的点分为两类,中间的红色线条为边界。

预测类别y=1 如果−3+x1+x2≥0预测类别y=0 如果−3+x1+x2<0

此例子中

hθ(x)=g(θ0+θ1x1+θ2x2)

对更多维的数据进行分类时,线性边界的情况,边界形式如下:

θ1x1+θ2x2+...+θnxn=θTx

根据logistic回归可知预测函数为:

hθ(x(i))=g(θTxi)=11+e−θTxi

hθ(x(i)函数的值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为:

P(y=1|x;θ)=hθ(x(i)
P(y=0|x;θ)=1−hθ(x(i)

合起来写则可以得到下式:

P(y|x;θ)=(hθ(x))y(1−hθ(x))1−y

取似然函数得到下式:

L(θ)=∏i=1mP(y(i)|x(i),θ)

求自然对数得到对数似然函数:

l(θ)=lnL(θ)
=∑i=1m(y(i)lnhθ(x(i))+(1−y(i))ln(1−hθ(x(i))))

最大似然估计就是要求得使l(θ)取最大值时的θ,利用梯度上升法求解,求得的θ就是要求的最佳参数。下面是利用梯度上升法求解过程。

求利用梯度上升法求解l(θ)的最大值时,根据梯度上升法知道θ的更新公式如下:

θj:=θj+α∂∂θjl(θ)    (j=0...n)

下面先求出l(θ)的偏导数:

∂∂θjl(θ)=∑i=1m((y(i)1hθ(x(i))∂∂θjhθ(x(i))−(1−y(i))11−hθ(x(i))∂∂θjhθ(x(i))
=∑i=1m((y(i)1g(θTx(i))−(1−y(i))11−g(θTx(i)))∂∂θjg(θTx(i))

因为g(θTxi)是logistic函数

g(θTxi)=11+e−θTxi

所以我们利用前面讲的logistic函数的导数性质可以将l(θ)的偏导数转化

∂∂θjl(θ)=∑i=1m((y(i)1g(θTx(i))−(1−y(i))11−g(θTx(i)))g(θTx(i))(1−g(θTx(i)))∂∂θjθTx(i)
=∑i=1m(y(i)(1−g(θTx(i)))−(1−y(i))g(θTx(i)))x(i)j
=∑i=1m(y(i)−g(θTx(i)))x(i)j
=∑i=1m(y(i)−hθ(x(i)))x(i)j

这样就得到了更新的过程

θj:=θj+α∑i=1m(y(i)−hθ(x(i)))x(i)j    (j=0...n)

python代码实现

本文代码运行环境:

python:3.5.1

pandas:0.19.2

其他环境可能有细微差别

# -*coding:utf-8*-
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math # 获取数据
data = pd.read_table("./logistic.txt", sep="\t", header=None)
dataMat = data.iloc[:, 0:-1]
labelMat = data.iloc[:, -1] def sigmoid(dataSeries):
return 1.0 / (1 + np.exp(-dataSeries)) # 梯度上升算法
def gradAscent(dataMatrix, LabelsVector):
n = dataMatrix.shape[1]
alpha = 0.001
maxCycles = 500
thetas = np.ones((n, 1))
for k in range(maxCycles): # heavy on matrix operations
h = sigmoid(dataMatrix * thetas) # matrix mult
error = LabelsVector.T - h # vector subtraction
thetas = thetas + alpha * dataMatrix.T * error # matrix mult
return thetas def plotBestFit(thetas, data):
"""
:param thetas: type DataFrame , the thetas
:param data: type DtaFrame , all the data
:return:
"""
X1 = data[data[3] == 0]
X2 = data[data[3] == 1]
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(X1[1], X1[2], s=30, c='red', marker='s')
ax.scatter(X2[1], X2[2], s=30, c='green')
x = np.arange(-3.0, 3.0, 0.1)
y = (-thetas.iloc[0, 0] - thetas.iloc[1, 0] * x) / thetas.iloc[2, 0]
ax.plot(x, y)
plt.xlabel('X1')
plt.ylabel('X2')
plt.show() thetas = gradAscent(np.mat(dataMat), np.mat(labelMat))
plotBestFit(pd.DataFrame(thetas), data)

画出的图如下所示:

代码和数据下载地址:链接:http://pan.baidu.com/s/1hs6CKL2 密码:308l

参考资料

1、https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

2、https://en.wikipedia.org/wiki/Logistic_function

欢迎python爱好者加入:学习交流群 667279387

数据挖掘算法(三)--logistic回归的更多相关文章

  1. 常见算法(logistic回归,随机森林,GBDT和xgboost)

    常见算法(logistic回归,随机森林,GBDT和xgboost) 9.25r早上面网易数据挖掘工程师岗位,第一次面数据挖掘的岗位,只想着能够去多准备一些,体验面这个岗位的感觉,虽然最好心有不甘告终 ...

  2. 第三集 欠拟合与过拟合的概念、局部加权回归、logistic回归、感知器算法

    课程大纲 欠拟合的概念(非正式):数据中某些非常明显的模式没有成功的被拟合出来.如图所示,更适合这组数据的应该是而不是一条直线. 过拟合的概念(非正式):算法拟合出的结果仅仅反映了所给的特定数据的特质 ...

  3. 机器学习算法-logistic回归算法

    Logistic回归算法调试 一.算法原理 Logistic回归算法是一种优化算法,主要用用于只有两种标签的分类问题.其原理为对一些数据点用一条直线去拟合,对数据集进行划分.从广义上来讲这也是一种多元 ...

  4. 神经网络、logistic回归等分类算法简单实现

    最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里 ...

  5. 【机器学习实战】第5章 Logistic回归

    第5章 Logistic回归 Logistic 回归 概述 Logistic 回归虽然名字叫回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类. 须知概念 ...

  6. logistic回归具体解释(二):损失函数(cost function)具体解释

    有监督学习 机器学习分为有监督学习,无监督学习,半监督学习.强化学习.对于逻辑回归来说,就是一种典型的有监督学习. 既然是有监督学习,训练集自然能够用例如以下方式表述: {(x1,y1),(x2,y2 ...

  7. 【机器学习实战】第5章 Logistic回归(逻辑回归)

    第5章 Logistic回归 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/ ...

  8. 机器学习实战3:逻辑logistic回归+在线学习+病马实例

    本文介绍logistic回归,和改进算法随机logistic回归,及一个病马是否可以治愈的案例.例子中涉及了数据清洗工作,缺失值的处理. 一 引言 1 sigmoid函数,这个非线性函数十分重要,f( ...

  9. 05机器学习实战之Logistic 回归

    Logistic 回归 概述 Logistic 回归 或者叫逻辑回归 虽然名字有回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式, ...

随机推荐

  1. Java设计模式之单利模式(Singleton)

    单利模式的应用场景: 单利模式(Singleton Pattern)是指确保一个类在任何情况下都绝对只有一个实例.并提供一个全局反访问点.单利模式是创建型模式.单利模式在生活中应用也很广泛,比如公司C ...

  2. Javascript模块化开发2——Gruntfile.js详解

    一.grunt模块简介 grunt插件,是一种npm环境下的自动化工具.对于需要反复重复的任务,例如压缩.编译.单元测试.linting等,自动化工具可以减轻你的劳动,简化你的工作.grunt模块根据 ...

  3. jquery ajax在 IE8/IE9 中无效

    你们是不是也曾经和我以为遇到过这样的情况呢,jquery ajax在 IE8/IE9 中无效获取不到数据呢,经过熬夜找到好的东西和你们分享一下就是jQuery-ajaxTransport-XDomai ...

  4. xposed实现个人收款免签支付

    想必很多程序员都有这样的烦恼,想做个人网站,但如何实现收款功能? 今天我就给大家分享一下我的实现方案:基于xposed逆向框架实现微信免签支付.支付宝免签支付 接下来给大家简单分享一下实现过程,这个过 ...

  5. thinkphp6.0 开启调试模式以及Driver [Think] not supported

    thinkphp6.0 开启调试模式 首先确认自己是通过 composer 进行的下载,然后修改系统目录下的 .example.env 为 .env 文件 修改 config->app.php ...

  6. nyoj 100-1的个数 (因为只统计1的个数,连栈都不需要了)

    100-1的个数 内存限制:64MB 时间限制:3000ms 特判: No 通过数:33 提交数:42 难度:1 题目描述: 小南刚学了二进制,他想知道一个数的二进制表示中有多少个1,你能帮他写一个程 ...

  7. for循环的更多写法

    在看设计模式这本书,遇到一个令人疑惑的for循环语句 for (var i = 0, type;type = ['String', 'Array', 'Number'][i++]) { 代码块 } 比 ...

  8. 无法优化的O(n!) 算法

    旅行商问题: 有一位旅行商,他需要前往5个城市. 要前往这5个城市,同时要确保旅程最短. 对于每种顺序,他都计算总旅程,再挑选出旅程最短的路线.5个城市有120种不同的排列方式.因此,在涉及5个城市时 ...

  9. 2019-11-26:密码学基础知识,csrf防御

    信息安全的基础是数学--->密码算法--->安全协议(ssl VPN)-->应用(证书 PKI)密码学入门密码编码学:研究加解密算法的学科密码分析学:研究破译密码算法的学科 加解密分 ...

  10. k8s Ingress 理解和部署

    目录 前言 Ingress 与 ingress-controller Ingress 部署 1.部署 ingress-controller 2.部署测试 web 服务 3.部署 Ingress 4.检 ...