数据挖掘算法(三)--logistic回归
数据挖掘算法学习笔记汇总
数据挖掘算法(一)–K近邻算法 (KNN)
数据挖掘算法(二)–决策树
数据挖掘算法(三)–logistic回归
在介绍logistic回归之前先复习几个基础知识点,有助于后面的理解。
基本数学知识点
1、对数似然函数
若总体X为离散型,其概率分布列为
其中θ为未知参数。设 (X1,X2,...,Xn) 是取自总体样本容量为n的样本,则(X1,X2,...,Xn)的联合概率分布率为
又设(X1,X2,...,Xn)的一组观测值为(x1,x2,...,xn),易知样本X1,X2,...,Xn取到观测值 x1,x2,...,xn 的概率为
这一概率随 θ 的取值而变化,它是 θ 的函数,称 L(θ) 为样本的似然函数。但是由于来连乘的函数处理起来比较麻烦,所以对 L(θ) 取自然对数变成加法来处理要简单点。
2、logistic函数
logistic函数或logistic曲线是常见的“S”形(sigmoid curve ,S形曲线),方程式如下:
其中
- e自然对数
- x0 S形中点的x值
- L曲线的 最大值
- k曲线的陡度
上图是L=1,k=1,x0=0时的图像
这里主要说明下这个函数的导数的性质,后面推导的时候会用到。f(x)=11+e−x=ex1+exddxf(x)=ex(1+ex)−exex(1+ex)2ddxf(x)=ex(1+ex)2=f(x)(1−f(x))
logistic回归数学推导
先看一个简单的例子:
我们将平面上的点分为两类,中间的红色线条为边界。
预测类别y=1 如果−3+x1+x2≥0预测类别y=0 如果−3+x1+x2<0
此例子中
对更多维的数据进行分类时,线性边界的情况,边界形式如下:
根据logistic回归可知预测函数为:
hθ(x(i)函数的值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为:
合起来写则可以得到下式:
取似然函数得到下式:
求自然对数得到对数似然函数:
最大似然估计就是要求得使l(θ)取最大值时的θ,利用梯度上升法求解,求得的θ就是要求的最佳参数。下面是利用梯度上升法求解过程。
求利用梯度上升法求解l(θ)的最大值时,根据梯度上升法知道θ的更新公式如下:
下面先求出l(θ)的偏导数:
因为g(θTxi)是logistic函数
所以我们利用前面讲的logistic函数的导数性质可以将l(θ)的偏导数转化
这样就得到了更新的过程
python代码实现
本文代码运行环境:
python:3.5.1
pandas:0.19.2
其他环境可能有细微差别
# -*coding:utf-8*-
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math
# 获取数据
data = pd.read_table("./logistic.txt", sep="\t", header=None)
dataMat = data.iloc[:, 0:-1]
labelMat = data.iloc[:, -1]
def sigmoid(dataSeries):
return 1.0 / (1 + np.exp(-dataSeries))
# 梯度上升算法
def gradAscent(dataMatrix, LabelsVector):
n = dataMatrix.shape[1]
alpha = 0.001
maxCycles = 500
thetas = np.ones((n, 1))
for k in range(maxCycles): # heavy on matrix operations
h = sigmoid(dataMatrix * thetas) # matrix mult
error = LabelsVector.T - h # vector subtraction
thetas = thetas + alpha * dataMatrix.T * error # matrix mult
return thetas
def plotBestFit(thetas, data):
"""
:param thetas: type DataFrame , the thetas
:param data: type DtaFrame , all the data
:return:
"""
X1 = data[data[3] == 0]
X2 = data[data[3] == 1]
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(X1[1], X1[2], s=30, c='red', marker='s')
ax.scatter(X2[1], X2[2], s=30, c='green')
x = np.arange(-3.0, 3.0, 0.1)
y = (-thetas.iloc[0, 0] - thetas.iloc[1, 0] * x) / thetas.iloc[2, 0]
ax.plot(x, y)
plt.xlabel('X1')
plt.ylabel('X2')
plt.show()
thetas = gradAscent(np.mat(dataMat), np.mat(labelMat))
plotBestFit(pd.DataFrame(thetas), data)
画出的图如下所示:
代码和数据下载地址:链接:http://pan.baidu.com/s/1hs6CKL2 密码:308l
参考资料
1、https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
2、https://en.wikipedia.org/wiki/Logistic_function
欢迎python爱好者加入:学习交流群 667279387
数据挖掘算法(三)--logistic回归的更多相关文章
- 常见算法(logistic回归,随机森林,GBDT和xgboost)
常见算法(logistic回归,随机森林,GBDT和xgboost) 9.25r早上面网易数据挖掘工程师岗位,第一次面数据挖掘的岗位,只想着能够去多准备一些,体验面这个岗位的感觉,虽然最好心有不甘告终 ...
- 第三集 欠拟合与过拟合的概念、局部加权回归、logistic回归、感知器算法
课程大纲 欠拟合的概念(非正式):数据中某些非常明显的模式没有成功的被拟合出来.如图所示,更适合这组数据的应该是而不是一条直线. 过拟合的概念(非正式):算法拟合出的结果仅仅反映了所给的特定数据的特质 ...
- 机器学习算法-logistic回归算法
Logistic回归算法调试 一.算法原理 Logistic回归算法是一种优化算法,主要用用于只有两种标签的分类问题.其原理为对一些数据点用一条直线去拟合,对数据集进行划分.从广义上来讲这也是一种多元 ...
- 神经网络、logistic回归等分类算法简单实现
最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里 ...
- 【机器学习实战】第5章 Logistic回归
第5章 Logistic回归 Logistic 回归 概述 Logistic 回归虽然名字叫回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类. 须知概念 ...
- logistic回归具体解释(二):损失函数(cost function)具体解释
有监督学习 机器学习分为有监督学习,无监督学习,半监督学习.强化学习.对于逻辑回归来说,就是一种典型的有监督学习. 既然是有监督学习,训练集自然能够用例如以下方式表述: {(x1,y1),(x2,y2 ...
- 【机器学习实战】第5章 Logistic回归(逻辑回归)
第5章 Logistic回归 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/ ...
- 机器学习实战3:逻辑logistic回归+在线学习+病马实例
本文介绍logistic回归,和改进算法随机logistic回归,及一个病马是否可以治愈的案例.例子中涉及了数据清洗工作,缺失值的处理. 一 引言 1 sigmoid函数,这个非线性函数十分重要,f( ...
- 05机器学习实战之Logistic 回归
Logistic 回归 概述 Logistic 回归 或者叫逻辑回归 虽然名字有回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式, ...
随机推荐
- python基础-面向过程编程
面向过程编程 面向过程编程其实是一种机械式的思维方式,其核心就是"过程". 过程指的是一种解决问题的步骤,即先干什么再干什么,最后干什么. 优点:将复杂的问题流程化,进而简单化. ...
- BASH 编程之变量高级篇
内部变量 • $$与$BASHPID都代表着执行程序的进程 ID,我们可以通过 echo 打印,并用 ps 指令检查得到相同的进程 ID [root@oracle ~]# echo $BASHPID ...
- PHP Openssl 生成公钥私钥
<?php //配置信息 $dn = array( "countryName" => "GB", "stateOrProvinceName ...
- 019.Kubernetes二进制部署插件dashboard
一 修改配置文件 1.1 下载解压 [root@k8smaster01 ~]# cd /opt/k8s/work/kubernetes/ [root@k8smaster01 kubernetes]# ...
- CSS如何修改tr边框属性
有很多时候,我们都要自定义为表格合并边框,这个只要 table{ border-collapse:collapse; } 就可以了 参数: separate 默认值.边框会被分开.不会忽略border ...
- 用c语言打印一个三角形
#define _CRT_SECURE_NO_WARNINGS#include<stdio.h>#include<string.h>#include<stdlib.h&g ...
- Python数据挖掘入门与实战PDF电子版加源码
Python数据分析挖掘实战讲解和分析PDF加源码 链接: https://pan.baidu.com/s/1SkZR2lGFnwZiQNav-qrC4w 提取码: n3ud 好的资源就要共享,我会一 ...
- PHP 提交复选框数据
PHP 提交复选框数据 前台,name要加 []: <input type="checkbox" name="cate[]" value="ca ...
- 防火墙和SELinux
在/etc/sysconfig/selinux中修改SELINUX=disabled关闭SELinux 执行systemctl disable firewalld关闭防火墙 然后重启计算机
- Linux关机、重启、退出
序号 命令 说明 1 shutdown -h now 立即关机 2 shutdown -h +10 "请各位退出" 十分钟后关机,同时广播通告“请各位退出” 3 shutd ...