T1是个容斥,我掐手指一算他为了卡容斥的正确性,绝不会把n和m出的很相近($O(n^2)$算法在nm相等的时候达到最高时间复杂度),不然就太好做了,于是开了特判+各种卡常和滚动数组优化,卡到了70分,$n^2$过100000,暴力碾标算。T2十三分钟AC没啥说的,也就是审题吧。大概是个flag了。T3的话自以为状压拿了50,看来是我太天真了。WA了10分,QJ的另外10分没拿到noooooooo。其实是题意理解有偏差。

T1想了好久组合数没有想到,T2直接秒掉,T3打了半天废的,大概这就是命吧,下次目标就是A掉T1,(这么多场从没A过T1。。)

下面是题解:

T1:考虑大力容斥,考场上一直在想怎么挖掉dp的一维,最终发现不可挖,就直接过了,没有想容斥,其实挺好想的。

$ans=C_{m-n+n-1}^{n-1}+\sum \limits_{i=1}^{min(n,m/K)}(-1)^iC_{m-n+(n-1)-iK}^{n-1}C_n^i$

$ans=C_{m-1}^{n-1}+\sum \limits_{i=1}^{min(n,m,K)}(-1)^iC_{m-1-iK}^{n-1}C_n^i$

O(m)容斥既可。

T2:老套路建反图Tarjan缩点+拓扑+dp即可。

设$dp[i]$为第i个的SCC完全被轰炸所需要的时间。

$dp[i]=\max \limits_j^{e(i,j)} dp[j]+sz[i]$

$ans=\max \limits_{i=1}^{n} dp[i]$

T3是个神仙dp,是真的神仙。

看了标程序才弄明白。

大体思路是用一个类似背包的东西把n个人的贡献压到一起,真正做到了一个数组来表现n个人除了多少个剪刀石头布的意义,同时用下一次的决策来统计答案,在最后错排来达到压在一起之后的离散,从而乘上正确的概率。

具体来说,将状态$i,j,k$分成两种,已经确定当前次的决策的和未确定当前次决策的,一个已确定决策的可以由未确定状态的当前阶段状态转移过来,同时也可以由相同决策的较低阶段状态转移过来。

前者的转移直接乘上当前人的概率即可,表示这个人作为当前的决策士兵来转移;后者的转移表示的是当前士兵作为之前某一阶段的士兵插在当前决策的前面,所以用相同决策的上一阶段状态来转移。这是理性的理解。

感性理解一下,一个状态可以由他之前的所有状态转移而来,当前阶段的无决策状态转移到我身上毫无疑问,而那些同决策上一阶段的状态转移到我身上,其实也是转移到他们身上的上一阶段无决策状态借此机会转移到了我身上,而他们身上的状态其实是无状态的转移“前缀和”,所以当前这个状态通过一系列的转移最终的到了各个阶段的无决策状态的转移。

  理解的快感,让我难以自拔。

「2019.8.9 考试」神仙的dp总让人无所适从的更多相关文章

  1. 「2019.8.11 考试」一套把OI写的很诗意的题

    这次写的更惨了,T2暴力再次挂掉了. 先写了T1的75暴力,然后写了T2的70分暴力(挂成了25),T3啥也不会骗了12分.T3看完题一点思路没有,心态爆炸了,一直在观察数据,忽略的思考的重要性,以至 ...

  2. 「2019.7.22 考试」AC和WA0一步之遥

    这卷子还是答的挺惨的. 第一题5min写完了,自认为AC(其实WA了80),第二题推了半天CRT的公式老出错结果发现是程序打错了.第三题打模拟150行结果数组没开够,开大就是0->60的转变.状 ...

  3. LOJ #2731. 「JOISC 2016 Day 1」棋盘游戏(dp)

    题意 JOI 君有一个棋盘,棋盘上有 \(N\) 行 \(3\) 列 的格子.JOI 君有若干棋子,并想用它们来玩一个游戏.初始状态棋盘上至少有一个棋子,也至少有一个空位. 游戏的目标是:在还没有放棋 ...

  4. #507. 「LibreOJ NOI Round #1」接竹竿 dp

    题目: 题解: 我们考虑把每对花色相同的牌看作区间. 那么如果我们设 \(f_i\) 表示决策在 \([1,i]\) 内的最优答案. 那么有 \(f_i = max\{max\{(f_{j-1}+\s ...

  5. LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿

    二次联通门 : LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿 /* LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿 dp 记录一下前驱 ...

  6. LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)

    题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...

  7. WAIC | 奇点云携「酷炫AI应用」亮相2019世界人工智能大会

    你是否还在疑惑“人工智能可否改变世界?” 那么,你该有一些危机感了. 机器视觉.自然语言处理.智能语音.机器人问诊.智慧驾驶……这些AI技术及应用早已渗入了我们日常生活的点滴. 29日,以「智联世界, ...

  8. kettle并行运行时出现「Unknown error in KarafBlueprintWatcher」

    背景:在使用kettle 6进行大量数据并行抽取时,偶尔会出现「Unknown error in KarafBlueprintWatcher」的错误,详细的报错信息可以查看下面的代码块. ERROR: ...

  9. 面试必备:高频算法题终章「图文解析 + 范例代码」之 矩阵 二进制 + 位运算 + LRU 合集

    Attention 秋招接近尾声,我总结了 牛客.WanAndroid 上,有关笔试面经的帖子中出现的算法题,结合往年考题写了这一系列文章,所有文章均与 LeetCode 进行核对.测试.欢迎食用 本 ...

随机推荐

  1. Django2.0入门:第一章、Django是啥

    Django介绍 缘起 随着Python语言的兴起,越来越多的程序员开始转向这门语言的学习.在我们学习完Python基础之后,就可以选择利用Python这门语言进行Web应用开发.而众多Python ...

  2. atomic_inc(&v)原子操作简述

    atomic_inc(&v)对变量v用锁定总线的单指令进行不可分解的"原子"级增量操作,避免v的值由于中断或多处理器同时操作造成不确定状态. 原子操作 所谓原子操作,就是该 ...

  3. 【TencentOS tiny】又有一个操作系统开源

    新闻 2019年9月18日,腾讯宣布将开源 自主研发的轻量级物联网实时操作系统TencentOS tiny.相比市场上其它系统,腾讯TencentOS tiny在资源占用.设备成本.功耗管理以及安全稳 ...

  4. 使用dynamic来简化反射实现,调用指定方法或构造函数

    dynamic是Framework4.0的新特性,dynamic的出现让C#具有了弱语言类型的特性,编译器在编译的时候,不再对类型进行检查,不会报错,但是运行时如果执行的是不存在的属性或者方法,运行程 ...

  5. RRiBbit,一个事件总线.基于spring配置不同服务通信!

    1.何为RRiBbit? *一种开源事件总线技术,能够让模块(组件)之间双向通讯,也被称为请求相应总线(request-response-bus),使用简单,相对其他框架来说,RRiBbit只需要加个 ...

  6. Bran的内核开发教程(bkerndev)-06 全局描述符表(GDT)

    全局描述符表(GDT)   在386平台各种保护措施中最重要的就是全局描述符表(GDT).GDT为内存的某些部分定义了基本的访问权限.我们可以使用GDT中的一个索引来生成段冲突异常, 让内核终止执行异 ...

  7. ssh隧道代理连接

    0x00 什么是SSH隧道 场景: 假设有两台主机: A主机为外网,B主机为内网通常来说外网主机A是无法直接连接到内网主机B的,这时如果要实现A主机通过ssh控制B主机,通常来说有两种方法: 1.端口 ...

  8. PHP array_udiff_assoc

    1.函数的参数:返回数组的差集,比较时包括键值. 2.函数的参数: @params array $array @params array $array1 @params array $array2 . ...

  9. PHP array_replace_recursive

    1.函数的作用:比较键值,递归的替代数组中的元素 2.函数的参数: @params array $array1 @params array $array2 @params array $array3 ...

  10. [BZOJ1076] 奖励关

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...