多源最短路径算法—Floyd算法
前言
在图论中,在寻路最短路径中除了Dijkstra
算法以外,还有Floyd
算法也是非常经典,然而两种算法还是有区别
的,Floyd主要计算多源最短路径。
在单源正权值最短路径,我们会用Dijkstra算法来求最短路径,并且算法的思想很简单——贪心算法:每次确定最短路径的一个点然后维护(更新)这个点周围点的距离加入预选队列,等待下一次的抛出确定。但是虽然思想很简单,实现起来是非常复杂
的,我们需要邻接矩阵(表)储存长度,需要优先队列(或者每次都比较)维护一个预选点的集合。还要用一个boolean数组标记是否已经确定、还要---------
总之,Dijkstra
算法的思想上是很容易接受的,但是实现上其实是非常麻烦的。但是单源最短路径没有更好的办法。复杂度也为O(n2)
而在n节点多源最短路径中,如果从Dijkstra算法的角度上,只需要将Dijkstra封装,然后执行n次Dijkstra算法即可,复杂度为O(n3)
。但是这样感觉很臃肿,代码量巨大,占用很多空间内存。有没有啥方法能够稍微变变口味呢?
答案是有的,这就是易写但稍需要理解的Floyd
算法。一个求多元最短路径算法。
算法介绍
先看看百度百科的定义吧:
Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。
简单的来说,算法的主要思想是动态规划(dp),而求最短路径需要不断松弛
(熟悉spfa算法的可能熟悉松弛)。
而算法的具体思想为:
邻接矩阵dist
储存路径,同时最终状态代表点点的最短路径。如果没有直接相连的两点那么默认为一个很大的值(不要溢出)!而自己的长度为0.- 从
第1个到第n个
点依次加入图中。每个点加入进行试探是否有路径长度被更改。 - 而上述试探具体方法为遍历图中每一个点(i,j双重循环),判断每一个点对距离是否因为加入的点而发生最小距离变化。如果发生改变,那么两点(i,j)距离就更改。
- 重复上述直到最后插点试探完成。
其中第三步的状态转移方程为:
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j])
其中dp[x][y]
的意思可以理解为x到y的最短路径。所以dp[i][k]
的意思可以理解为i到k的最短路径dp[k][j]
的意思可以理解为k到j的最短路径.
咱们图解一个案例:
默认的最短长度初始为邻接矩阵初始状态
- 加入第一个节点
1
,大家可以发现,由于1的加入,使得本来不连通的2,3
点对和2,4
点对变得联通,并且加入1后距离为当前最小。(可以很直观加入5之后2,4,更短但是还没加入)。为了更好的描述其实此时的直接联通点多了两条。(2,3)和(2,4).我们在dp中不管这个结果是通过前面那些步骤来的,但是在这个状态,这两点的最短距离就算它!
- 同时你可以发现加入
1
其中也使得3,1,4
这样联通,但是3,1,4
联通的话距离为9远远大于本来的(3,4)
为2,所以不进行更新。 - 咱们继续加入第二个节点。在加入的初始态为:
- 进行遍历插入看看是否更新节点
实际上这个时候图中的连线就比较多了。当然这些连线都是代表当前的最短路径。 这也和我们的需求贴合,我们最终要的是所有节点的最短路径。每个节点最终都应该有6条指向不同节点的边! 表示邻接矩阵的最终结果。
至于算法的模拟两部核心已经告诉大家了,大家可以自行模拟剩下的。
程序实现
而对于程序而言,这个插入的过程相当简单。核心代码只有四行!
代码如下
public class floyd {
static int max = 66666;// 别Intege.max 两个相加越界为负
public static void main(String[] args) {
int dist[][] = {
{ 0, 2, 3, 6, max, max },
{ 2, 0, max, max,4, 6 },
{ 3, max, 0, 2, max, max },
{ 6, max, 2, 0, 1, 3 },
{ max, 4, max, 1, 0, max },
{ max, 6, max, 3, max, 0 } };// 地图
// 6个
for (int k = 0; k < 6; k++)// 加入滴k个节点
{
for (int i = 0; i < 6; i++)// 松弛I行
{
for (int j = 0; j < 6; j++)// 松弛i列
{
dist[i][j] = Math.min(dist[i][j], dist[i][k] + dist[k][j]);
}
}
}
// 输出
for (int i = 0; i < 6; i++) {
System.out.print("节点"+(i+1)+" 的最短路径");
for (int j = 0; j < 6; j++) {
System.out.print(dist[i][j]+" ");
}
System.out.println();
}
}
}
结果为:
可以自行计算,图和上篇的Dijkstra是一致的,大家可以自行比对,结果一致,说明咱么的结果成功的。
当然,在你学习的过程中,可以在每加入一个节点插入完成后,打印邻接矩阵的结果,看看前两部和笔者的是否相同(有助于理解
),如果相同,则说明正确!
你可能还会有疑惑,那咱么就用一个局部性来演示一下,看其中AB最短距离变化情况祝你理解:
好啦,Floyd算法就介绍到这里,如果对你有帮助,请动动小手点个赞吧!蟹蟹。
希望和各位共同进步!欢迎关注笔者公众号:bigsai
!
多源最短路径算法—Floyd算法的更多相关文章
- 数据结构与算法--最短路径之Floyd算法
数据结构与算法--最短路径之Floyd算法 我们知道Dijkstra算法只能解决单源最短路径问题,且要求边上的权重都是非负的.有没有办法解决任意起点到任意顶点的最短路径问题呢?如果用Dijkstra算 ...
- 最短路径---Dijkstra/Floyd算法
1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也 ...
- 单源最短路径(dijkstra算法)php实现
做一个医学项目,当中在病例评分时会用到单源最短路径的算法.单源最短路径的dijkstra算法的思路例如以下: 如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点.那么( ...
- 最短路径问题——floyd算法
floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法 ...
- [链接]最短路径的几种算法[迪杰斯特拉算法][Floyd算法]
最短路径—Dijkstra算法和Floyd算法 http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算 ...
- 图的最短路径---弗洛伊德(Floyd)算法浅析
算法介绍 和Dijkstra算法一样,Floyd算法也是为了解决寻找给定的加权图中顶点间最短路径的算法.不同的是,Floyd可以用来解决"多源最短路径"的问题. 算法思路 算法需要 ...
- 多源最短路——Floyd算法
Floyd算法 问题的提出:已知一个有向网(或者无向网),对每一对定点vi!=vj,要求求出vi与vj之间的最短路径和最短路径的长度. 解决该问题有以下两种方法: (1)轮流以每一个定点为源点,重复执 ...
- 0016:单源最短路径(dijkstra算法)
题目链接:https://www.luogu.com.cn/problem/P4779 题目描述:给定一个 n 个点,m 条有向边的带非负权图,计算从 s 出发,到每个点的距离. 这道题就是一个单源最 ...
- 最短路径之Floyd算法
Floyd算法又称弗洛伊德算法,也叫做Floyd's algorithm,Roy–Warshall algorithm,Roy–Floyd algorithm, WFI algorithm. Floy ...
随机推荐
- 用代码说话:如何在Java中实现线程
并发编程是Java语言的重要特性之一,"如何在Java中实现线程"是学习并发编程的入门知识,也是Java工程师面试必备的基础知识.本文从线程说起,然后用代码说明如何在Java中实现 ...
- js多重数组完全展开
有时候项目中会遇到多重数组,需要判断多重数组里面有没有要找的对象,强大的js就可以帮助我们 var arrTest = [1, [2, 3, [4]], 5, 6, [7, 8], [[9, [10, ...
- k8s集群部分常见问题处理
目录 部分常见问题处理 Coredns CrashLoopBackOff 导致无法成功添加工作节点的问题 添加工作节点时提示token过期 kubectl 执行命令报“The connection t ...
- (数据科学学习手札69)详解pandas中的map、apply、applymap、groupby、agg
*从本篇开始所有文章的数据和代码都已上传至我的github仓库:https://github.com/CNFeffery/DataScienceStudyNotes 一.简介 pandas提供了很多方 ...
- Keras(六)Autoencoder 自编码 原理及实例 Save&reload 模型的保存和提取
Autoencoder 自编码 压缩与解压 原来有时神经网络要接受大量的输入信息, 比如输入信息是高清图片时, 输入信息量可能达到上千万, 让神经网络直接从上千万个信息源中学习是一件很吃力的工作. 所 ...
- FEL,项目实装记录
FEL,即Fast EL ,版本0.8,具体内容我就不贴了,自行百度 实装遇到的问题: Spring Boot 打包后无法进行表达式编译. 根据百度以及源码,确定这东西是在用JavaCompiler将 ...
- 图论之拓扑排序 poj 2367 Genealogical tree
题目链接 http://poj.org/problem?id=2367 题意就是给定一系列关系,按这些关系拓扑排序. #include<cstdio> #include<cstrin ...
- 你知道@RequestMapping的name属性有什么用吗?【享学Spring MVC】
每篇一句 牛逼架构师:把复杂问题简单化,把简单问题搞没 菜逼架构师:把简单问题复杂化 前言 不知这个标题能否勾起你的好奇心和求知欲?在Spring MVC的使用中,若我说@RequestMapping ...
- JUC(1)
cmd目录切换 D:\>cd /d D:\Program Files\Java\jdk1.8.0_201\bin 1. JUC 简介 在 Java 5.0 提供了 java.util.concu ...
- Marrkdown基础用法
目录 前言 markdown简介 用法列表 标题 字符效果和横线 引用 锚点与链接 代码高亮 图片 有序列表&无序列表 表格 特殊符号与颜色处理 markdown进阶技巧 参考文章 前言 因为 ...