Matt has N friends. They are playing a game together.

Each of Matt’s friends has a magic number. In the game, Matt selects some (could be zero) of his friends. If the xor (exclusive-or) sum of the selected friends’magic numbers is no less than M , Matt wins.

Matt wants to know the number of ways to win.

InputThe first line contains only one integer T , which indicates the number of test cases.

For each test case, the first line contains two integers N, M (1 ≤ N ≤ 40, 0 ≤ M ≤ 10 6).

In the second line, there are N integers ki (0 ≤ k i ≤ 10 6), indicating the i-th friend’s magic number.OutputFor each test case, output a single line “Case #x: y”, where x is the case number (starting from 1) and y indicates the number of ways where Matt can win.Sample Input

2
3 2
1 2 3
3 3
1 2 3

Sample Output

Case #1: 4
Case #2: 2

Hint

In the first sample, Matt can win by selecting:
friend with number 1 and friend with number 2. The xor sum is 3.
friend with number 1 and friend with number 3. The xor sum is 2.
friend with number 2. The xor sum is 2.
friend with number 3. The xor sum is 3. Hence, the answer is 4.
题意:输入N和M,表示有N个数供你随机选择,求你选择的这些数(不能有重复的)的异或值大于等于M的方法有多少个,不选异或值就是零,选一个异或值就是本身。

分析:N最大为40,暴力法的复杂度为N!,必然不可行,考虑到N的范围比较小,而且这些数的异或值是有限的。所以想到是一道动态规划题。而异或的最大值为10^6约等于2^20,我们可以在这个范围内枚举异或,对于从第一个数取到第n个数的的结果就是d[n][∑j],j为大于m的异或值,对于每一个阶段,我们可以选择异或a[i]或者不异或,对应的状态转移方程也就是a[i][j]=a[i-1][j]+a[i-1][j^a[i]]。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define maxn 1000005
typedef long long ll;
ll a[maxn], dp[][maxn];
ll T,cas,n,m,ans;
int main() {
cin >> T;
cas = ;
while( T -- ) {
cin >> n >> m;
ans = ;
for(ll i=; i<=n; i++) {
cin >> a[i];
}
memset(dp, , sizeof(dp));
dp[][] = ;
for(ll i=; i<=n; i++) {
for(ll j=; j<maxn; j++) {
//dp[i][j]为用前面i个数(少于或等于)异或得到j的个数
dp[i][j] += dp[i-][j];//加上用i-1个数(少于或等于)得到j的个数
dp[i][j^a[i]] += dp[i-][j];
//i-1个数与第i个数异或得到j的个数等于前i-1个数(少于或等于)得到j的个数
}
}
for(ll j=m; j<maxn; j++) {
ans += dp[n][j];
}
printf("Case #%lld: %lld\n", cas++, ans);
}
return ;
}

2014 北京区域赛 dp的更多相关文章

  1. HDU 5119 Happy Matt Friends(2014北京区域赛现场赛H题 裸背包DP)

    虽然是一道还是算简单的DP,甚至不用滚动数组也能AC,数据量不算很大. 对于N个数,每个数只存在两个状态,取 和 不取. 容易得出状态转移方程: dp[i][j] = dp[i - 1][j ^ a[ ...

  2. HDU 5122 K.Bro Sorting(2014北京区域赛现场赛K题 模拟)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5122 解题报告:定义一种排序算法,每一轮可以随机找一个数,把这个数与后面的比这个数小的交换,一直往后判 ...

  3. [hdu5136]Yue Fei's Battle 2014 亚洲区域赛广州赛区J题(dp)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud 现场赛的时候由于有个地方有点小问题,没有成功AC,导致与金牌失之交臂. 由于今天下 ...

  4. HDU 5119 Happy Matt Friends (14北京区域赛 类背包dp)

    Happy Matt Friends Time Limit: 6000/6000 MS (Java/Others)    Memory Limit: 510000/510000 K (Java/Oth ...

  5. zoj 3822 Domination(2014牡丹江区域赛D题) (概率dp)

    3799567 2014-10-14 10:13:59                                                                     Acce ...

  6. ZOJ 3822 ( 2014牡丹江区域赛D题) (概率dp)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 题意:每天往n*m的棋盘上放一颗棋子,求多少天能将棋盘的每行每列都至少有 ...

  7. The 2014 ACM-ICPC Asia Mudanjiang Regional Contest(2014牡丹江区域赛)

    The 2014 ACM-ICPC Asia Mudanjiang Regional Contest 题目链接 没去现场.做的网络同步赛.感觉还能够,搞了6题 A:这是签到题,对于A堆除掉.假设没剩余 ...

  8. 2014 牡丹江区域赛 B D I

    http://acm.zju.edu.cn/onlinejudge/showContestProblems.do?contestId=358 The 2014 ACM-ICPC Asia Mudanj ...

  9. 2017 ACM-ICPC 北京区域赛记录

    ------------------------------------------------------------------------------ 出发日 拖着一个大箱子走是真的累. 下午三 ...

随机推荐

  1. oracle实战(一)

    一.表空间的创建以及删除 声明:此操作环境为windows,oracle10G 表空间? ORACLE数据库的逻辑单元. 数据库---表空间 一个表空间可以与多个数据文件(物理结构)关联 一个数据库下 ...

  2. javascript+jQuery补充

    一.jQuery事件绑定 <div class='c1'> <div> <div class='title'>菜单一</div> <div cla ...

  3. 浅谈 ASCII、Unicode、UTF-8,一目了然

    对于ASCII.Unicode.UTF-8这三种编码方式我们经常用到,也经常挂到嘴边,但他们是怎么来的,为什么要存在,具体是怎么个规则,我们并没有做深入了解,下面,就带你看一下他们到底是怎么回事吧…… ...

  4. JavaSE之——并没有多维数组

     近日在读<疯狂Java讲义>精粹第二版,部分语述摘自其中,自己边敲边理解 前言       我们知道,Java语言支持的类型有两种:            1.基本类型(即八大基本数据类 ...

  5. 【故障公告】发布 .NET Core 版博客站点引起大量 500 错误

    非常抱歉,今天上午的博客站点故障给大家带来了很大的麻烦,请大家谅解.这次故障是我们发布 .NET Core 版博客站点引起的,虽然我们进行了充分的准备,但还是低估了高并发下的复杂问题. 以下是故障背景 ...

  6. 编码规范 | Java函数优雅之道(下)

    上文背景 本文总结了一套与Java函数相关的编码规则,旨在给广大Java程序员一些编码建议,有助于大家编写出更优雅.更高质.更高效的代码. 内部函数参数尽量使用基础类型 案例一:内部函数参数尽量使用基 ...

  7. Java内存映射,上G大文件轻松处理

    内存映射文件(Memory-mapped File),指的是将一段虚拟内存逐字节映射于一个文件,使得应用程序处理文件如同访问主内存(但在真正使用到这些数据前却不会消耗物理内存,也不会有读写磁盘的操作) ...

  8. 洛谷 P2044 [NOI2012]随机数生成器

    题意简述 读入X[0], m, a, c, n和g $ X[n+1]=(a*X[n]+c)\mod m $ 求X数列的第n项对g取余的值. 题解思路 矩阵加速 设\[ F=\begin{bmatrix ...

  9. Go开发中的十大常见陷阱[译]

    原文: The Top 10 Most Common Mistakes I've Seen in Go Projects 作者: Teiva Harsanyi 译者: Simon Ma 我在Go开发中 ...

  10. opencv 视觉项目学习笔记(二): 基于 svm 和 knn 车牌识别

    车牌识别的属于常见的 模式识别 ,其基本流程为下面三个步骤: 1) 分割: 检测并检测图像中感兴趣区域: 2)特征提取: 对字符图像集中的每个部分进行提取: 3)分类: 判断图像快是不是车牌或者 每个 ...