题意:求A^B的因子的和。

/*
首先将A分解 A=p1^a1*p2^a2*...*pn*an
A^B=p1^a1B*p2^a2B*...*pn*anB
因子之和sum=(1+p1+p1^2+...+p1^a1B)*...*(1+pn+pn^2+...+pn*anB)
套用等比数列的公式,再用逆元搞一下。
求逆元:(a/b)mod m=amod(bm)/b
*/
#include<cstdio>
#include<iostream>
#define N 10010
#define mod 9901
#define lon long long
using namespace std;
int prime[N],f[N],num;
void get_prime(){
for(int i=;i<N;i++){
if(!f[i]) prime[++num]=i;
for(int j=;j<=num;j++){
if(i*prime[j]>=N) break;
f[i*prime[j]]=;
if(i%prime[j]) break;
}
}
}
lon msm(lon A,lon B,lon MOD){
lon base=A,r=;
while(B){
if(B&) r=(r+base)%MOD;
base=(base+base)%MOD;
B>>=;
}
return r;
}
lon ksm(lon A,lon B,lon MOD){
lon base=A,r=;
while(B){
if(B&) r=msm(r,base,MOD);
base=msm(base,base,MOD);
B>>=;
}
return r;
}
void solve(lon A,lon B){
lon ans=;
for(int i=;prime[i]*prime[i]<=A;i++){
if(A%prime[i]==){
int num=;
while(A%prime[i]==){
num++;
A/=prime[i];
}
lon M=(prime[i]-)*mod;
ans*=(ksm(prime[i],num*B+,M)+M-)/(prime[i]-);
ans%=mod;
}
}
if(A>){
lon M=mod*(A-);
ans*=(ksm(A,B+,M)+M-)/(A-);
ans%=mod;
}
cout<<ans<<endl;
}
int main(){
lon A,B;
get_prime();
while(cin>>A>>B)
solve(A,B);
return ;
}

Sumdiv(poj1845)的更多相关文章

  1. POJ 1845 Sumdiv(逆元)

    题目链接:Sumdiv 题意:给定两个自然数A,B,定义S为A^B所有的自然因子的和,求出S mod 9901的值. 题解:了解下以下知识点   1.整数的唯一分解定理 任意正整数都有且只有唯一的方式 ...

  2. 【题解】POJ1845 Sumdiv(乘法逆元+约数和)

    POJ1845:http://poj.org/problem?id=1845 思路: AB可以表示成多个质数的幂相乘的形式:AB=(a1n1)*(a2n2)* ...*(amnm) 根据算数基本定理可 ...

  3. 约数之和(POJ1845 Sumdiv)

    最近应老延的要求再刷<算法进阶指南>(不得不说这本书不错)...这道题花费了较长时间~(当然也因为我太弱了)所以就写个比较易懂的题解啦~ 原题链接:POJ1845 翻译版题目(其实是AcW ...

  4. POJ 1845 Sumdiv (整数唯一分解定理)

    题目链接 Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 25841   Accepted: 6382 Desc ...

  5. POJ 1845 Sumdiv (整数拆分+等比快速求和)

    当我们拆分完数据以后, A^B的所有约数之和为: sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...*[1+pn+pn^2 ...

  6. poj 1845 Sumdiv(约数和,乘法逆元)

    题目: 求AB的正约数之和. 输入: A,B(0<=A,B<=5*107) 输出: 一个整数,AB的正约数之和 mod 9901. 思路: 根据正整数唯一分解定理,若一个正整数表示为:A= ...

  7. POJ 1845 Sumdiv (数学,乘法逆元)

    题意: 给出数字A和B,要求AB的所有因子(包括AB和1)之和 mod 9901 的结果. 思路: 即使知道公式也得推算一阵子. 很容易知道,先把分解得到,那么得到,那么的所有因子之和的表达式如下: ...

  8. acm数学(转)

    这个东西先放在这吧.做过的以后会用#号标示出来 1.burnside定理,polya计数法    这个大家可以看brudildi的<组合数学>,那本书的这一章写的很详细也很容易理解.最好能 ...

  9. POJ 题目分类(转载)

    Log 2016-3-21 网上找的POJ分类,来源已经不清楚了.百度能百度到一大把.贴一份在博客上,鞭策自己刷题,不能偷懒!! 初期: 一.基本算法: (1)枚举. (poj1753,poj2965 ...

随机推荐

  1. Dev之GridControl详解

    Dev控件中的表格控件GridControl控件非常强大.不过,一些细枝末节的地方有时候用起来不好找挺讨厌的.使用过程中,多半借助Demo和英文帮助文档.网上具体的使用方法也多半零碎.偶遇一个简单而且 ...

  2. 【Hibernate】多对多关系的表达

    User.hbm.xml <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE hibernate ...

  3. JS中的对象之原型

    对象 ECMAScript做为一个高度抽象的面向对象语言,是通过_对象_来交互的.即使ECMAScript里边也有_基本类型_,但是,当需要的时候,它们也会被转换成对象. 一个对象就是一个属性集合,并 ...

  4. CAS介绍

    1.概述 单点登录(Single Sign On),简称为 SSO,是目前比较流行的企业业务整合的解决方案之一.SSO的定义是在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系统. 耶 ...

  5. webpack3整理(第二节/满三节)

    消除未使用的CSS:安装PurifyCSS-webpack插件 cnpm i purifycss-webpack purify-css -D const glob = require('glob'); ...

  6. php的一个魔法常亮__DIR__

    我们知道PHP中提供了一个魔术常量(magic constant)__FILE__,用来指向当前执行的PHP脚本.但PHP没有直接提供该脚本所在目录的常量.也就是说如果我们要得到当前PHP脚本所在的目 ...

  7. java调用jacob生成pdf,word,excel横向

    /* * 传进一个office文件的byte[]以及后缀,生成一个pdf文件的byte[] */ public byte[] jacob_Office2Pdf(byte[] srcFileBytes, ...

  8. swift 多态函数方式

    1.v-table:   class 2.WitnessTable protocol 3.消息派发. @objc dynamic

  9. 用闭包方式实现点击a标签弹也索引值

    var self = document.getElementsByTagName("a"); for(var i=0;i<self.length;i++){ self[i]. ...

  10. java_tcp_简单示例

    package netProgram; import java.io.DataOutputStream; import java.io.IOException; import java.net.Ser ...