[bzoj4816][Sdoi2017]数字表格 (反演+逆元)
(真不想做莫比乌斯了)
首先根据题意写出式子
∏(i=1~n)∏(j=1~m)f[gcd(i,j)]
很明显的f可以预处理出来,解决
根据套路分析,我们可以先枚举gcd(i,j)==d
∏(d=1~n)f[d]......后面该怎么写?
我们发现前面式子中i,j为连乘,而对于相同的gcd,就可以变成f[d]的几次幂!
则∏(d=1~n)f[d]Σ(i=1~n/d)Σ(j=1~m/d)[gcd(i,j)==1]
然后就可以开心的反演了
∏(d=1~n)f[d]Σ(i=1~n/d)Σ(j=1~m/d)[gcd(i,j)==1]
=∏(d=1~n)f[d]Σ(i=1~n/d)Σ(j=1~m/d)Σ(k|i&&k|j)μ(k)
(接下来,我们先枚举k)
=∏(d=1~n)f[d]Σ(k=1~n)μ[k](n/kd)(m/kd)
(先枚举kd=D)
=∏(D=1~n)∏(d|D)f[d]μ[D/d](n/D)(m/D)
=∏(D=1~n)(∏(d|D)f[d]μ[D/d])(n/D)(m/D)
至此反演结束
再来观察这个式子,我们发现∏(d|D)f[d]μ[D/d]是关于D的一个函数,我们可以把它的前缀积处理出来,复杂度O(n*log(n))
处理过程中,当μ[D/d]==-1时需要除法,所以需要求逆元,而对于1e9+7这个素数,f[i]对于1e9+7的逆元为pow(f[i],mod-2)
在求解时我们需要取一段的前缀积,所以还需要把前缀积的逆元处理出来,方法同上
逆元处理复杂度O(n*log(n))
在求解时结合数论分块和快速幂,复杂度O(T*sqrt(n)*log(n))
总复杂度O(n*log(n)+T*sqrt(n)*log(n))
这道题做的时候主要卡在把变成Σ并变成指数,在此做个标记
AC代码
#include<cstdio>
#include<iostream>
#define ll long long
#define re register
const int mod=1e9+7;
using namespace std;
int p[500010],top;bool v[1000010];short mu[1000010];ll f[1000010],ni[1000010],tot[1000010];
inline ll pow(ll a,ll b){
re ll ans=1;
for(;b;b>>=1){
if(b&1) (ans*=a)%=mod;
(a*=a)%=mod;
}
return ans;
}
int main(){
mu[1]=1;f[1]=1;ni[1]=1;tot[1]=1;
for(int i=2;i<=1000000;i++)
f[i]=(f[i-1]+f[i-2])%mod,ni[i]=pow(f[i],mod-2),tot[i]=1;
for(int i=2;i<=1000000;i++){
if(!v[i]){
p[++top]=i;
mu[i]=-1;
}
for(int j=1;j<=top&&p[j]*i<=1000000;j++){
v[i*p[j]]=1;
if(!(i%p[j])) break;
mu[i*p[j]]=-mu[i];
}
}
for(int i=1;i<=1000000;i++){
for(re int j=1;j*i<=1000000;j++)
if(mu[j]==-1) (tot[j*i]*=ni[i])%=mod;
else if(mu[j]==1) (tot[j*i]*=f[i])%=mod;
}
tot[0]=1;
for(int i=1;i<=1000000;i++) (tot[i]*=tot[i-1])%=mod;
ni[0]=1;
for(re int i=1;i<=1000000;i++)
ni[i]=pow(tot[i],mod-2);
re int t,n,m,x;
re ll ans;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);ans=1;
if(n>m) swap(n,m);
for(int i=1;i<=n;i=x+1){
x=min((n/(n/i)),(m/(m/i)));
(ans*=pow(tot[x]*ni[i-1]%mod,1ll*(n/i)*(m/i)))%=mod;
}
printf("%lld\n",ans);
}
return 0;
}
[bzoj4816][Sdoi2017]数字表格 (反演+逆元)的更多相关文章
- BZOJ4816 [Sdoi2017]数字表格 数论 莫比乌斯反演
原文链接http://www.cnblogs.com/zhouzhendong/p/8666106.html 题目传送门 - BZOJ4816 题意 定义$f(0)=0,f(1)=1,f(i)=f(i ...
- BZOJ4816 [Sdoi2017]数字表格 【莫比乌斯反演】
题目 Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生成了 ...
- BZOJ4816 SDOI2017 数字表格 莫比乌斯反演
传送门 做莫比乌斯反演题显著提高了我的\(\LaTeX\)水平 推式子(默认\(N \leq M\),分数下取整,会省略大部分过程) \(\begin{align*} \prod\limits_{i= ...
- bzoj4816 [Sdoi2017]数字表格
Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...
- bzoj 4816 [Sdoi2017]数字表格——反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4816 \( ans=\prod\limits_{d=1}^{n}f[d]^{\sum\lim ...
- BZOJ4816 Sdoi2017数字表格
一开始只推出O(TN)的做法,后来看了看发现再推一步就好了. 我们只需要枚举gcd就可以啦. 然后我们改变一下枚举顺序 设T为dk 预处理中间那部分前缀积就好了. #include<bits/s ...
- 【BZOJ4816】数字表格(莫比乌斯反演)
[BZOJ4816]数字表格(莫比乌斯反演) 题面 BZOJ 求 \[\prod_{i=1}^n\prod_{j=1}^mf[gcd(i,j)]\] 题解 忽然不知道这个要怎么表示... 就写成这样吧 ...
- [SDOI2017]数字表格 --- 套路反演
[SDOI2017]数字表格 由于使用markdown的关系 我无法很好的掌控格式,见谅 对于这么简单的一道题竟然能在洛谷混到黑,我感到无语 \[\begin{align*} \prod\limits ...
- [Sdoi2017]数字表格 [莫比乌斯反演]
[Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...
随机推荐
- Masonry tableviewCell布局
前言 说到iOS自动布局,有很多的解决办法.有的人使用xib/storyboard自动布局,也有人使用frame来适配.对于前者,笔者并不喜欢,也不支持.对于后者,更是麻烦,到处计算高度.宽度等,千万 ...
- 并不对劲的字符串专题(二):kmp
据说这些并不对劲的内容是<信息学奥赛一本通提高篇>的配套练习. 先感叹一句<信息学奥赛一本通提高篇>上对kmp的解释和matrix67的博客相似度99%(还抄错了),莫非mat ...
- bzoj 2169 连边 —— DP+容斥
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2169 就和这篇博客说的一样:https://blog.csdn.net/WerKeyTom_ ...
- glyphicon 图标的使用
基本用法<span class="glyphicon glyphicon-search"></span>可以将图标放于按钮于链接中,一个大按钮,按钮的内容是 ...
- Mysql数据库的触发器、存储引擎和存储过程
数据库的触发器 1.触发器 触发器是MySQL响应以下任意语句而自动执行的一条MySQL语句(或位于BEGIN和END语句之间的一组语句): DELETE,INSERT,UPDATE 我们可以监视某表 ...
- Scanner类nextLine()和next()的区别和使用方法
next()一定要读取到有效字符后才可以结束输入,对输入有效字符之前遇到的空格键.Tab键或Enter键等结束符,next()方法会自动将其去掉,只有在输入有效字符之后,next()方法才将其后输入的 ...
- 哈理工OJ P2320:OX
题目链接:OX 题意 :给出一个3X3的黑白棋棋盘,棋盘上有若干黑白子,再给出下一个下的人,问下一个下的人能否赢 分析:考虑到只有39种状态,故用一个数保存目前棋盘的状态,记为value,再枚举空位D ...
- bzoj 1602: [Usaco2008 Oct]牧场行走【瞎搞】
本来想爆手速写个树剖,然而快下课了就手残写了了个n方的短小-- 暴力把查询的两个点中深的一个跳上来,加上边权,然后一起跳加边权就行了 #include<iostream> #include ...
- bzoj 1951: [Sdoi2010]古代猪文 【中国剩余定理+欧拉定理+组合数学+卢卡斯定理】
首先化简,题目要求的是 \[ G^{\sum_{i|n}C_{n}^{i}}\%p \] 对于乘方形式快速幂就行了,因为p是质数,所以可以用欧拉定理 \[ G^{\sum_{i|n}C_{n}^{i} ...
- bzoj1483: [HNOI2009]梦幻布丁(vector+启发式合并)
1483: [HNOI2009]梦幻布丁 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 4022 Solved: 1640[Submit][Statu ...