SPOJ 1479 +SPOJ 666 无向树最小点覆盖 ,第二题要方案数,树形dp
题意:求一颗无向树的最小点覆盖。
本来一看是最小点覆盖,直接一下敲了二分图求最小割,TLE。
树形DP,叫的这么玄乎,本来是线性DP是线上往前\后推,而树形DP就是在树上,由叶子结点状态向根状态推。
dp[u][1/0]:表示,结点u,1:选择,0,:不选。dp值是以改点为根(目前为止,dfs遍历顺序自然决定了树的层)的已经选择点数,自然开始时不知道,对每个点,初值dp[u][0]=0、
dp[u][1]=1,回溯的时候:
1:dp[u][1]+=min(dp[v][1],dp[v][0]);该节点选择了,那么子节点可选可不选。
2:dp[u][0]+=dp[v][1];该节点没有选择,则其子节点必需选择。
#include<iostream>
#include<queue>
#include<stack>
#include<cstdio>
#include<vector>
using namespace std;
int n;
vector<vector<int> >v(100010);
int vis[100010];
int dp[100010][2];
inline int minn(int a,int b)
{
if(a<b)return a;
return b;
}
void dfs(int u)
{
dp[u][0]=0; //不放,0个
dp[u][1]=1; //放一个,
for(int i=0;i<v[u].size();i++)
{
int vv=v[u][i];
if(!vis[vv])
{
vis[vv]=1;
dfs(vv);
dp[u][0]+=dp[vv][1]; //回溯时加上
dp[u][1]+=minn(dp[vv][1],dp[vv][0]);
}
}
}
int main()
{
scanf("%d",&n);
int tx,ty;
for(int i=0;i<n-1;i++)
{
scanf("%d%d",&tx,&ty);
v[tx].push_back(ty);
v[ty].push_back(tx);
}
vis[1]=1;
dfs(1);
cout<<minn(dp[1][0],dp[1][1]); //结果为根放与不放的状态最小值
return 0;
}
666,求最优时候方案数,
多一个DP方程即可。
#include<iostream>
#include<cstdio>
#include<vector>
using namespace std;
int n;
vector<vector<int> >v(100020);
int vis[100020];
struct state
{
int light;
int count;
};
state dp[100020][2];
inline int minn(int a,int b)
{
if(a<b)return a;
return b;
}
void dfs(int u)
{
dp[u][0].light=0; //不放,0个
dp[u][1].light=1; //放一个,
dp[u][0].count=dp[u][1].count=1;
for(int i=0;i<v[u].size();i++)
{
int vv=v[u][i];
if(!vis[vv])
{
vis[vv]=1;
dfs(vv);
dp[u][0].light+=dp[vv][1].light; //回溯时加上
dp[u][1].light+=minn(dp[vv][1].light,dp[vv][0].light); dp[u][0].count= dp[u][0].count*dp[vv][1].count%10007; if(dp[vv][1].light<dp[vv][0].light)
dp[u][1].count=dp[u][1].count*dp[vv][1].count%10007; else if (dp[vv][1].light>dp[vv][0].light)
dp[u][1].count=dp[u][1].count*dp[vv][0].count%10007; else
dp[u][1].count=dp[u][1].count*(dp[vv][0].count+dp[vv][1].count)%10007; }
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
int tx,ty;
for(int i=0;i<=n;i++)
{
v[i].clear();vis[i]=0;
}
for(int i=0;i<n-1;i++)
{
scanf("%d%d",&tx,&ty);
v[tx].push_back(ty);
v[ty].push_back(tx);
}
vis[1]=1;
dfs(1);
int ans1=minn(dp[1][0].light,dp[1][1].light); //结果为根放与不放的状态最小值
if(dp[1][0].light<dp[1][1].light)
{
printf("%d %d\n",ans1,dp[1][0].count);
}
else if(dp[1][0].light>dp[1][1].light)
{
printf("%d %d\n",ans1,dp[1][1].count);
}
else
{
int ans2= (dp[1][0].count%10007+dp[1][1].count%10007)%10007;
printf("%d %d\n",ans1,ans2);
}
}
return 0;
}
SPOJ 1479 +SPOJ 666 无向树最小点覆盖 ,第二题要方案数,树形dp的更多相关文章
- Strategic game(无向?)二分图最小点覆盖(Poj1463,Uva1292)
原题链接 此题求二分图的最小点覆盖,数值上等于该二分图的最大匹配.得知此结论可以将图染色,建有向图,然后跑匈牙利/网络流,如下.然而... #include<iostream> #incl ...
- UVALive 4329 树状数组第二题
大白书上的题目,比较巧妙的是其分析,为了求某个i点做裁判的时候的情况数,只要知道左边有多少比它小的记为ansc,右边有多少比它小的记为ansd,则总种数,必定为 ansc*(右边总数-ansd)+an ...
- HDU 1054 Strategic Game(最小点覆盖+树形dp)
题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=106048#problem/B 题意:给出一些点相连,找出最小的点数覆盖所有的 ...
- HDU 1054 Strategic Game (最小点覆盖)【二分图匹配】
<题目链接> 题目大意:鲍勃喜欢玩电脑游戏,特别是战略游戏,但有时他无法找到解决方案,速度不够快,那么他很伤心.现在,他有以下的问题.他必须捍卫一个中世纪的城市,形成了树的道路.他把战士的 ...
- LA 2038 Strategic game(最小点覆盖,树形dp,二分匹配)
题意即求一个最小顶点覆盖. 对于没有孤立点的图G=(V,E),最大独立集+最小顶点覆盖= V.(往最大独立集加点) 问题可以变成求树上的最大独立集合. 每个结点的选择和其父节点选不选有关, dp(u, ...
- 【BZOJ2286】消耗战(虚树,DFS序,树形DP)
题意:一棵N个点的树上有若干个关键点,每条边有一个边权,现在要将这些关键点到1的路径全部切断,切断一条边的代价就是边权. 共有M组询问,每组询问有k[i]个关键点,对于每组询问求出完成任务的最小代价. ...
- nyoj 237 游戏高手的烦恼 二分匹配--最小点覆盖
题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=237 二分匹配--最小点覆盖模板题 Tips:用邻接矩阵超时,用数组模拟邻接表WA,暂时只 ...
- POJ训练计划3041_Asteroids(二分图/最小点覆盖=最大匹配)
解题报告 http://blog.csdn.net/juncoder/article/details/38135053 题目传送门 题意: 给出NxN的矩阵,有M个点是障碍 每次仅仅能删除一行或者一列 ...
- CodeCraft-19 and Codeforces Round #537 (Div. 2) E 虚树 + 树形dp(新坑)
https://codeforces.com/contest/1111/problem/E 题意 一颗有n个点的树,有q个询问,每次从树挑出k个点,问将这k个点分成m组,需要保证在同一组中不存在一个点 ...
随机推荐
- ERROR 2003 (HY000): Can't connect to MySQL server on 'localhost' (10061) : 第一次设置MySQL也适用
[MySQL的安装环境]:windows7 64位 [MySQL的版本]:mysql-8.0.16-winx64 [错误描述]: ERROR 2003 (HY000): Can't connect t ...
- 冒泡法排序参考(Java)
package com.swift; public class Maopao { //冒泡法 public static void main(String[] args) { int[] arr= { ...
- 组合的输出(DFS)
题目描述: 排列与组合是常用的数学方法,其中组合就是从n个元素中抽出r个元素(不分顺序且r<=n),我们可以简单地将n个元素理解为自然数1,2,…,n,从中任取r个数. 现要求你用递归的方法输出 ...
- MySQL中常见的锁
一.按读写方式分类 1.读锁又称共享锁,读锁是共享的,读锁之间是互不阻塞. 2.写锁又称排他锁,写锁是排他的,写锁会阻塞其他读锁和写锁 二.按锁的粒度分类 1.表锁是MySQL中最基本的锁策略,该锁的 ...
- Vue.js—单元测试
Vue.js--测试 这里采用的是Vue官方工具(Vue-CLI)搭建出来的项目,在这个搭建工具中推荐的两种测试分别是 端到端的测试 E2E 单元测试 Unit Test 端到端的测试(E2E) E2 ...
- modelsim安装调试
modelsim,debug:“unable to checkout a viewer license necessary for use of the modelsim graphical user ...
- Python Importlib模块与__import__详解
Importlib模块与__import__都可以通过过字符串来导入另外一个模块,但在用法上和本质上都有很大的不同. 以一个例子为证: 以下为我的工程目录结构: lib/test.py: name = ...
- (转)自定义UITabBar
push页面时,可调用hidesBottomBarWhenPushed进行隐藏. 第一步,我们需要一些图片: 各个选项的图标和tabbar的背景图片,最后还要一个透明的1x1像素的图片. 第二步,新建 ...
- Spark MLlib + maven + scala 试水~
使用SGD算法逻辑回归的垃圾邮件分类器 package com.oreilly.learningsparkexamples.scala import org.apache.spark.{SparkCo ...
- 流编辑器sed知识点总结
sed(流文本编辑器) 每次读取一行到模式空间中, 修改的sed模式空间中的内容,并不会修改源文件, 继而输出模式空间的内容, 最后删除模式空间中的内容. sed [O ...