We saw the little game Marmot made for Mole's lunch. Now it's Marmot's dinner time and, as we all know, Marmot eats flowers. At every dinner he eats some red and white flowers. Therefore a dinner can be represented as a sequence of several flowers, some
of them white and some of them red.

But, for a dinner to be tasty, there is a rule: Marmot wants to eat white flowers only in groups of sizek.

Now Marmot wonders in how many ways he can eat between
a and b flowers. As the number of ways could be very large, print it modulo1000000007 (109 + 7).

Input

Input contains several test cases.

The first line contains two integers t andk (1 ≤ t, k ≤ 105),
wheret represents the number of test cases.

The next t lines contain two integers
ai andbi (1 ≤ ai ≤ bi ≤ 105),
describing the i-th test.

Output

Print t lines to the standard output. Thei-th line should contain the number of ways in which Marmot can eat betweenai
andbi flowers at dinner modulo1000000007 (109 + 7).

Sample test(s)
Input
3 2
1 3
2 3
4 4
Output
6
5
5
Note
  • For K = 2 and length1 Marmot can eat (R).
  • For K = 2 and length2 Marmot can eat (RR) and (WW).
  • For K = 2 and length3 Marmot can eat (RRR), (RWW) and (WWR).
  • For K = 2 and length4 Marmot can eat, for example, (WWWW) or (RWWR), but for
    example he can't eat (WWWR).

考虑第n个。假如n是小于k的,那么仅仅能都是是R,也就是仅仅有一种情况。

假如大于等于k。假设第n个是W,那么从n-k+1到n所有为W,假设第n个是R,那么数量就是前n-1个的数量。

dp[n] = 1; (0<= n < k)

dp[n] = dp[n-1] + dp[n-k]; (n >= k)

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <iostream>
#include <queue>
#include <algorithm>
#include <cmath>
#define mem(f) memset(f,0,sizeof(f))
#define M 100005
#define mod 1000000007
#define MAX 0X7FFFFFFF
#define maxn 100005
#define lson o<<1, l, m
#define rson o<<1|1, m+1, r
using namespace std;
typedef long long LL; int n = maxn, k, t, a, b, dp[maxn], sum[maxn]; int main()
{
scanf("%d%d", &t, &k);
for(int i = 0; i < k; i++) dp[i] = 1;
for(int i = k; i < n; i++) dp[i] = (dp[i-1] + dp[i-k])%mod;
for(int i = 1; i < n; i++) sum[i] = (sum[i-1] + dp[i])%mod;
while(t--) {
scanf("%d%d", &a, &b);
printf("%d\n", ((sum[b]-sum[a-1])%mod+mod)%mod );
}
return 0;
}



Codeforces Round #271 (Div. 2) D. Flowers (递推 预处理)的更多相关文章

  1. Codeforces Round #271 (Div. 2) D. Flowers (递推)

    题目链接:http://codeforces.com/problemset/problem/474/D 用RW组成字符串,要求w的个数要k个连续出现,R任意,问字符串长度为[a, b]时,字符串的种类 ...

  2. Codeforces Round #671 (Div. 2) B. Stairs (递推)

    题意:一个台阶由一些单元格组成,如果一个高度为\(n\)的台阶中有\(n\)个不相邻的正方形(如图中的样例),就称这个台阶是"好台阶",现给你\(x\)个单元格,问最多能组成多少个 ...

  3. Codeforces Round #271 (Div. 2) D Flowers【计数dp】

    D. Flowers time limit per test 1.5 seconds memory limit per test 256 megabytes input standard input ...

  4. Codeforces Round #271 (Div. 2) D.Flowers DP

    D. Flowers   We saw the little game Marmot made for Mole's lunch. Now it's Marmot's dinner time and, ...

  5. Codeforces Round #271 (Div. 2)题解【ABCDEF】

    Codeforces Round #271 (Div. 2) A - Keyboard 题意 给你一个字符串,问你这个字符串在键盘的位置往左边挪一位,或者往右边挪一位字符,这个字符串是什么样子 题解 ...

  6. Codeforces Round #271 (Div. 2)D(递推,前缀和)

    很简单的递推题.d[n]=d[n-1]+d[n-k] 注意每次输入a和b时,如果每次都累加,就做了很多重复性工作,会超时. 所以用预处理前缀和来解决重复累加问题. 最后一个细节坑了我多次: print ...

  7. Codeforces Round #271 (Div. 2) F ,E, D, C, B, A

    前言:最近被线段树+简单递推DP虐的体无完肤!真是弱! A:简单题,照着模拟就可以,题目还特意说不用处理边界 B:二分查找即可,用lower_lound()函数很好用 #include<stri ...

  8. Codeforces Round #271 (Div. 2) 解题报告

    题目地址:http://codeforces.com/contest/474 A题:Keyboard 模拟水题. 代码例如以下: #include <iostream> #include ...

  9. Codeforces Round #271 (Div. 2)

    A. Keyboard 题意:一个人打字,可能会左偏一位,可能会右偏一位,给出一串字符,求它本来的串 和紫书的破损的键盘一样 #include<iostream> #include< ...

随机推荐

  1. centos7.2密码在单用户下面的修改

    centos7.2在但用户模式下面的修改 1.开机启动 2.grub模式按E健 3.Linux16行的"ro"修改为 "rw init=/sysroot/bin/sh&q ...

  2. iTOP4418开发板7寸屏幕Android系统下横竖屏设置

    Android系统屏幕旋转设置 平台: iTOP4418开发板+7寸屏幕 1. Androd4.4源码可以编译成手机模式和平板模式,讯为iTop4418 开发平台的Android系统默认编译为平板模式 ...

  3. (转)淘淘商城系列——使用maven tomcat插件启动聚合工程

    http://blog.csdn.net/yerenyuan_pku/article/details/72672389 上文我们一起学习了如何使用maven tomcat插件来启动web工程,本文我们 ...

  4. leetcode_655. Print Binary Tree

    https://leetcode.com/problems/print-binary-tree/ 打印整棵二叉树 class Solution { public: int getTreeHeight( ...

  5. Jmeter重要组件介绍(一)

    一.常用的取样器 二.常用的逻辑控制器 三.前置处理器 四.后置处理器 五.断言 六.定时器 七.配置元件 八.监听器

  6. 【HTML5】可以省略标记的元素

  7. rsync_ssh

    rsync -av -e "ssh" /data/wwwroot/a1 node2:/data/wwwroot/

  8. 第2节 mapreduce深入学习:9、手机上行流量排序

    还是上次那个例子,需求二:上行流量倒序排序(递减排序) 分析,以需求一的输出数据作为排序的输入数据,自定义FlowBean,以FlowBean为map输出的key,以手机号作为Map输出的value, ...

  9. [python] 时间序列分析之ARIMA

    1 时间序列与时间序列分析 在生产和科学研究中,对某一个或者一组变量  进行观察测量,将在一系列时刻  所得到的离散数字组成的序列集合,称之为时间序列. 时间序列分析是根据系统观察得到的时间序列数据, ...

  10. ios摇一摇功能

    在 UIResponder中存在这么一套方法 - (void)motionBegan:(UIEventSubtype)motion withEvent:(UIEvent *)event __OSX_A ...