$ans=\sum_{i=1}^n\sum_{j=1}^n\sigma(gcd(i,j))$

枚举gcd为d的所有数得到

$ans=\sum_{d<=n}\sigma(d)*g(d)$

$g(d)$表示所有(i,j)=d的二元组的数量。

那么可以反演得到$g(i)=\sum_{i \mid d}\mu(\lfloor d/i \rfloor )*\lfloor n/d \rfloor * \lfloor m/d \rfloor$

然后代入然后xjb变换可得

$ans=\sum_{d<=n}\lfloor n/d \rfloor * \lfloor m/d \rfloor \sum_{i \mid d}\mu( \lfloor d/i \rfloor ) * \sigma(i) $

然后我们要求出$\sum_{i \mid d}\mu(\lfloor d/i \rfloor ) *\sigma(i) $的前缀和就可以$\sqrt n$的时间内解决了

那么我们可以用每个数去暴力更新倍数即可,但是它是一个积性函数,是可以在$\Theta(n)$的时间内筛出来的。

但是有A的条件,我们可以去维护前缀和用树状数组,暴力更新倍数即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define md 2147483647
#define inf 0x3f3f3f3f
#define maxn 100005
struct query{int n,m,k,id,ans;}a[maxn]; struct Bit_Tree{
int x[maxn];
void add(int i,int f)
{for (;i<maxn;i+=i&(-i))x[i]+=f;}
int gs(int i)
{
int ret=0;
for (;i;i-=i&(-i)) ret+=x[i];
return ret;
}
}BT; int sigma[maxn],pr[maxn],top,mu[maxn],min_fac_a[maxn],min_fac_sum[maxn],rk[maxn]; void init()
{
sigma[1]=1;mu[1]=1;rk[1]=1;
F(i,2,maxn-1)
{
rk[i]=i;
if (!sigma[i])
{
pr[++top]=i;
min_fac_a[i]=i;
sigma[i]=min_fac_sum[i]=i+1;
mu[i]=-1;
}
F(j,1,top)
{
if (pr[j]*i>=maxn) break;
if (i%pr[j]==0)
{
sigma[pr[j]*i]=sigma[i]/min_fac_sum[i]*
(min_fac_sum[pr[j]*i]=min_fac_sum[i]+min_fac_a[i]*pr[j]);
min_fac_a[pr[j]*i]=min_fac_a[i]*pr[j];
mu[pr[j]*i]=0;
break;
}
sigma[pr[j]*i]=sigma[pr[j]]*sigma[i];
min_fac_a[pr[j]*i]=pr[j];
min_fac_sum[pr[j]*i]=pr[j]+1;
mu[pr[j]*i]=-mu[i];
}
}
} int t; bool cmp(query x,query y)
{return x.k<y.k;} bool cmp2(query x,query y)
{return x.id<y.id;} bool cmp3(int x,int y)
{return sigma[x]<sigma[y];} void add(int i)
{
F(j,1,inf)
{
if (i*j>=maxn) break;
BT.add(i*j,sigma[i]*mu[j]);
}
} int solve(int n,int m)
{
int ret=0;
for (int i=1,last=0;i<=n;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ret+=(BT.gs(last)-BT.gs(i-1))*(n/i)*(m/i);
}
return ret&md;
} int main()
{
init();
sort(rk+1,rk+maxn,cmp3);
scanf("%d",&t);
F(i,1,t)
{
scanf("%d%d%d",&a[i].n,&a[i].m,&a[i].k);
if (a[i].n>a[i].m) swap(a[i].n,a[i].m);
a[i].id=i;
}
sort(a+1,a+t+1,cmp);
int now=0;
F(i,1,t)
{
while (sigma[rk[now+1]]<=a[i].k) add(rk[++now]);
a[i].ans=solve(a[i].n,a[i].m);
}
sort(a+1,a+t+1,cmp2);
F(i,1,t) printf("%d\n",a[i].ans);
}

  

BZOJ 3529 [Sdoi2014]数表 ——莫比乌斯反演 树状数组的更多相关文章

  1. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  2. BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)

    题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...

  3. BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2321  Solved: 1187[Submit][Status ...

  4. 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组

    [BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...

  5. BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)

    题意 题目链接 Sol 首先不考虑\(a\)的限制 我们要求的是 \[\sum_{i = 1}^n \sum_{j = 1}^m \sigma(gcd(i, j))\] 用常规的套路可以化到这个形式 ...

  6. luogu3312 [SDOI2014]数表 (莫比乌斯反演+树状数组)

    link \(\sum_{i=1}^n\sum_{j=1}^m[s(\gcd(i,j))\le a]s(\gcd(i,j))\) \(=\sum_{p=1}^ns(p)[s(p)\le a]\sum_ ...

  7. bzoj 3529 数表 莫比乌斯反演+树状数组

    题目大意: 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...

  8. 【BZOJ3529】【莫比乌斯反演 + 树状数组】[Sdoi2014]数表

    Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为 能同时整除i和j的所有自然数之和.给定a,计算数表中不大于 ...

  9. BZOJ_3529_[Sdoi2014]数表_莫比乌斯反演+树状数组

    Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...

随机推荐

  1. 关于搭建系统直播和Thinkphp的杂谈(持续更新)

    Q:Access denied for user 'root'@'localhost' 错误 A:第一种:配置文件中把数据库的用户名密码再改一遍,把runtime里的文件删除  第二种:修改syste ...

  2. 重置Cacti密码

    Cacti登录密码忘记,重置Cacti密码 用root用户进入系统 [root@localhsot]# mysql -u root -p mysql> show databases; mysql ...

  3. 【数据库-MySQL on Azure】如何使用 MySQL EntityFramework 组件处理 MYSQL PaaS DB

    MySQL Database on Azure 是 Azure 平台上推出的 MySQL 云数据库服务,通过全面兼容 MySQL 协议,为用户提供了一个全托管的性能稳定.可快速部署.高可用.高安全性的 ...

  4. 联想e431笔记本更改硬盘模式bios设置的详细教程

    用硬盘安装系统,就要进入bios,将硬盘改为第一启动项即可重装系统.不同品牌的电脑,它的bios设置方法也就不同.那么,联想e431笔记本要如何更改硬盘模式呢?今天U大侠小编就和大家分享联想e431笔 ...

  5. Mathematics-基础:散列函数

    一,概念: 散列(HASH)函数H也称哈希函数.是典型的多到一的函数,其输入为一可变长x(可以足够的长),输出一固定长的串h(一般为128位.160位,比输入的串短),该串h被称为输入x的Hash值. ...

  6. ES6新增rest的用法

    arguments类似Array但是并不是Array 而rest就是一个Array 用rest替代atguments eg:给数组排序 //arguments变量的写法: function sortF ...

  7. 判断一个链表是否为回文结构 【题目】 给定一个链表的头节点head,请判断该链表是否为回 文结构。 例如: 1->2->1,返回true。 1->2->2->1,返回true。 15->6->15,返回true。 1->2->3,返回false。 进阶: 如果链表长度为N,时间复杂度达到O(N),额外空间复杂 度达到O(1)。

    方式1:借助栈 空间辅助度是O(N) 方式2: 借助栈 空间复杂度是 O(n/2).只存后半个链表 方式3: 反转后半个链表  最后再反转回来 package my_basic.class_3; im ...

  8. HTML5 FormData 模拟表单控件 支持异步上传二进制文件 移动端

    FormData是XMLHttpRequest Level 2添加的一个新的接口,利用FormData对象,我们可以通过JavaScript用一些键值对来模拟一系列表单控件,还可以使用XMLHttpR ...

  9. bzoj5183 [Baltic2016]Park

    题目描述: bz luogu 题解: 把坐标系看反了持续$WA$系列. 对偶图+并查集维护. 先处理出树对树.树对墙的空隙,然后把人和空隙按从小到大排序. 用并查集维护四面墙之间是否能互相隔断. 代码 ...

  10. 【树形dp】7.14城市

    很典型的按照边考虑贡献的题. 题目描述 小A居住的城市可以认为由n个街区组成.街区从1到n依次标号街区与街区之间由街道相连,每个街区都可以通过若干条街道到达任意一个街区,共有n-1条街道.其中标号为i ...